cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083481 Squarefree part of the n-th oblong number.

Original entry on oeis.org

2, 6, 3, 5, 30, 42, 14, 2, 10, 110, 33, 39, 182, 210, 15, 17, 34, 38, 95, 105, 462, 506, 138, 6, 26, 78, 21, 203, 870, 930, 62, 66, 1122, 1190, 35, 37, 1406, 1482, 390, 410, 1722, 1806, 473, 55, 230, 2162, 141, 3, 2, 102, 663, 689, 318, 330, 770, 798, 3306, 3422, 885
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003

Keywords

Comments

Smallest k such that n*(n+1)*k is a perfect square.
k = p*q*r... is a squarefree number where p,q,r are those prime factors of n(n+1) which have odd index.

Crossrefs

Programs

  • Maple
    A083481 := proc(n)
        A007913(n)*A007913(n+1) ;
    end proc:
    seq( A083481(n),n=1..40) ; # R. J. Mathar, Mar 15 2023
  • Mathematica
    sk[n_]:=Module[{k=1},While[!IntegerQ[Sqrt[n*k]],k++];k]; sk/@Table[n(n+1),{n,60}] (* Harvey P. Dale, Mar 28 2013 *)
  • PARI
    a(n)=core(n*(n+1))
    
  • Python
    from sympy.ntheory.factor_ import core
    def A083481(n): return core(n*(n+1)) # Chai Wah Wu, Mar 20 2023

Formula

a(n) = A007913(n*(n+1)). - R. J. Mathar, Nov 02 2011
a(n) = A007913(n) * A007913(n+1). - Amiram Eldar, Jul 10 2024

Extensions

More terms from Benoit Cloitre, May 04 2003

A243813 Table read by antidiagonals: T(n,k) is the curvature (truncated to integer) of a circle in a variation of nested Pappus chains (see Comments for details).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 9, 1, 1, 1, 1, 3, 13, 1, 1, 1, 1, 2, 5, 19, 1, 1, 1, 1, 1, 3, 7, 25, 1, 1, 1, 1, 1, 2, 4, 9, 33, 1, 1, 1, 1, 1, 1, 2, 5, 11, 41, 1, 1, 1, 1, 1, 1, 2, 3, 6, 14, 51, 1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 17, 61, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 9, 21
Offset: 0

Views

Author

Kival Ngaokrajang, Jun 11 2014

Keywords

Comments

Refer to the construction rule used in A243618. For this case, the curvature is defined by (-1/k, 1/(k-1), 1), the circle radius will diverge to infinity (zero curvature). The integral curvatures appearing as periodic, i.e., 2, 6, 6, 10, 30, 42, 28, 12, ..., = A083482(k-1). The integral curvatures seem to align as some sequence, e.g., 3, 7, 13, 21, 31, 43, ..., = A002061(k) and 9, 25, 49, ..., = A016754(k-1). See illustration.

Examples

			Table begins:
  n/k  2   3   4   5   6   7  ...
   0   1   1   1   1   1   1  ...
   1   1   1   1   1   1   1  ...
   2   3   1   1   1   1   1  ...
   3   5   2   1   1   1   1  ...
   4   9   3   2   1   1   1  ...
   5  13   5   3   2   1   1  ...
   6  19   7   4   2   2   1  ...
   7  25   9   5   3   2   2  ...
   8  33  11   6   4   3   2  ...
   9  41  14   7   5   3   2  ...
  10  51  17   9   6   4   3  ...
  11  61  21  11   7   5   3  ...
  12  73  25  13   8   5   4  ...
  ...
		

Crossrefs

Cf. Column 1 = A080827(n), column 2 = A056827(n) + 1.
Cf. Integral curvature in column 1..6: [A058331, A227776, A056107, A212656, A158558, A158604].
Showing 1-2 of 2 results.