A083527 a(n) is the number of times that sums 1+-4+-9+-16+-...+-n^2 of the first n squares is zero. There are 2^(n-1) choices for the sign patterns.
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 5, 0, 0, 43, 57, 0, 0, 239, 430, 0, 0, 2904, 5419, 0, 0, 27813, 50213, 0, 0, 348082, 649300, 0, 0, 3913496, 7287183, 0, 0, 50030553, 93696497, 0, 0, 611793542, 1161079907, 0, 0, 8009933135, 15176652567, 0, 0
Offset: 1
Keywords
Examples
a(7) = 1 because there is only one sign pattern of the first seven squares that yields zero: 1+4-9+16-25-36+49.
Links
- Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 1..500 (first 240 terms from Alois P. Heinz)
- T. D. Noe, Extremal Sums of Sequences
Programs
-
Maple
b:= proc(n, i) option remember; local m; m:= (1+(3+2*i)*i)*i/6; `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i^2), i-1) +b(n+i^2, i-1))) end: a:= n-> `if`(irem(n-1, 4)<2, 0, b(n^2, n-1)): seq(a(n), n=1..40); # Alois P. Heinz, Oct 31 2011
-
Mathematica
d={1, 1}; nMax=60; zeroLst={0}; Do[p=n^2; d=PadLeft[d, Length[d]+p]+PadRight[d, Length[d]+p]; If[1==Mod[Length[d], 2], AppendTo[zeroLst, d[[(Length[d]+1)/2]]], AppendTo[zeroLst, 0]], {n, 2, nMax}]; zeroLst/2 p = 1; t = {}; Do[p = Expand[p(x^(n^2) + x^(-n^2))]; AppendTo[t, Select[p, NumberQ[ # ] &]/2], {n, 51}]; t (* Robert G. Wilson v, Oct 31 2005 *)
-
PARI
a(n)=sum(i=0,2^(n-1)-1,sum(j=1,n-1,(-1)^bittest(i,j-1)*j^2)==n^2) \\ Charles R Greathouse IV, Nov 05 2012
Formula
a(n) is half the coefficient of x^0 in the product_{k=1..n} x^(k^2)+x^(k^-2).
a(n) = A158092(n)/2.
a(n) = [x^(n^2)] Product_{k=1..n-1} (x^(k^2) + 1/x^(k^2)). - Ilya Gutkovskiy, Feb 01 2024
Comments