cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007617 Values not in range of Euler phi function.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 51, 53, 55, 57, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 105, 107
Offset: 1

Views

Author

Keywords

Comments

Nontotient numbers.
All odd numbers > 2 are in the sequence.
The even numbers of the sequence are in A005277.
The asymptotic density of this sequence is 1. - Amiram Eldar, Mar 26 2021

Examples

			There are no solutions to phi(m)=14, so 14 is a member of the sequence.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, section B36, page 138-142.

Crossrefs

Numbers not in A000010.
Complement of A002202.
Cf. A083534 (first differences), A264739.

Programs

  • Haskell
    import Data.List.Ordered (minus)
    a007617 n = a007617_list !! (n-1)
    a007617_list = [1..] `minus` a002202_list
    -- Reinhard Zumkeller, Nov 22 2015
  • Maple
    A007617 := n -> if invphi(n)=[] then n fi: seq(A007617(i),i=1..107); # Peter Luschny, Jun 26 2011
  • Mathematica
    inversePhi[m_?OddQ] = {}; inversePhi[1] = {1, 2}; inversePhi[m_] := Module[{p, nmax, n, nn}, p = Select[Divisors[m] + 1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; nn = {}; While[n <= nmax, If[EulerPhi[n] == m, AppendTo[nn, n]]; n++]; nn]; Select[Range[107], inversePhi[#] == {} &] (* Jean-François Alcover, Jan 03 2012 *)
    Select[Range[107], invphi[#] == {}&] (* Jean-François Alcover, Mar 19 2019, using Maxim Rytin's much faster 'invphi' program *)
  • PARI
    is(n)=!istotient(n) \\ Charles R Greathouse IV, Dec 28 2013
    

Formula

A264739(a(n)) = 0. - Reinhard Zumkeller, Nov 26 2015

A083533 First difference sequence of A002202. Difference between consecutive possible values of phi(n), the Euler totient function A000010.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 6, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 4, 4, 6, 2, 2, 2, 4, 2, 2, 4, 4, 2, 6, 4, 2, 2, 2, 2, 4, 4, 2, 2, 4, 6, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 6, 2, 10, 2, 4, 4, 2, 2, 4, 2, 2, 4, 4, 2, 6, 4, 2, 2, 4, 6, 4, 2, 4
Offset: 1

Views

Author

Labos Elemer, May 20 2003

Keywords

Crossrefs

Programs

  • Haskell
    a083533 n = a083533_list !! (n-1)
    a083533_list = zipWith (-) (tail a002202_list) a002202_list
    -- Reinhard Zumkeller, Nov 26 2015
    
  • Mathematica
    t=Table[EulerPhi[w], {w, 1, 25000}]; u=Union[%]; Delete[u-RotateRight[u], 1]
  • PARI
    lista(lim) = {my(k1 = 1, k2 = 1); while(k1 < lim, until(istotient(k2), k2++); print1(k2 - k1, ", "); k1 = k2);} \\ Amiram Eldar, Nov 16 2024

Formula

a(n) = A002202(n+1) - A002202(n).

A063742 Cototients: numbers k such that x - phi(x) = k has at least one solution.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Labos Elemer, Aug 13 2001, corrected May 20 2003

Keywords

Comments

Numbers in range of A051953, the cototients. Complement of non-cototients, A005278 with respect to natural numbers A000027.

Examples

			First missing numbers are: 10,26,34,50,52,... These missing values are collected in A005278.
		

Crossrefs

Programs

  • Mathematica
    Union[Table[w-EulerPhi[w], {w, 1, A}]] (* taken for sufficiently large A. *)

Extensions

Edited by N. J. A. Sloane, Nov 17 2008 at the suggestion of R. J. Mathar

A083531 First difference sequence of A002191. Differences between possible values for sum of divisors of n.

Original entry on oeis.org

2, 1, 2, 1, 1, 4, 1, 1, 1, 3, 2, 4, 4, 2, 1, 1, 4, 2, 1, 1, 2, 2, 4, 6, 2, 1, 3, 2, 1, 5, 4, 2, 4, 2, 4, 6, 1, 2, 3, 2, 4, 2, 4, 2, 2, 2, 6, 1, 3, 2, 1, 1, 4, 1, 5, 2, 4, 6, 2, 4, 2, 2, 2, 2, 4, 3, 3, 2, 4, 2, 1, 3, 6, 2, 1, 3, 2, 4, 6, 2, 4, 1, 5, 2, 4, 2, 4, 6, 2, 6, 4, 3, 1, 2, 2, 4, 2, 4, 2, 6, 2, 2, 2, 4, 6
Offset: 1

Views

Author

Labos Elemer, May 20 2003

Keywords

Examples

			8 and 12 are the 6th and 7th possible values for sigma(x), since they are sum of divisors of x = 7 and x = 11 respectively, while 9, 10, 11 are impossible ones so 12 - 8 = 4 = a(6) = A002191(7) - A002191(6).
From _Michael De Vlieger_, Jul 22 2017: (Start)
First position of values:
Value   First position
    1         2
    2         1
    3        10
    4         6
    5        30
    6        24
    7       277
    8       165
    9       509
   10       150
   11       824
   12       400
   13     10970
   14      1400
   15     10448
   16      1182
   17     18731
   18      2218
   19    209237
   20      3420
   21    127385
   22      6910
   23     28899
   24      5377
(End)
		

Crossrefs

Cf. A002191, A007609, A007369, A083532, A083533, A083534, A083535, A083536, A109323 (start of record gaps in A002191).

Programs

  • Mathematica
    t=Table[DivisorSigma[1, w], {w, 1, 25000}]; u=Union[%]; Delete[u-RotateRight[u], 1]
    (* Second program: *)
    With[{nn = 300}, Differences@ TakeWhile[Union@ DivisorSigma[1, Range@ nn], # < nn &]] (* Michael De Vlieger, Jul 22 2017 *)

A083532 First difference sequence of A007369. Differences between impossible values for sum of divisors of n.

Original entry on oeis.org

3, 4, 1, 1, 5, 1, 2, 2, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 3, 1, 2, 4, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Labos Elemer, May 20 2003

Keywords

Examples

			29 and 33 are the 15th and 16th nonsense values for sigma(x), since there exist no numbers n of which they are sums of divisors, while {30,31,32} equal sigma(x); e.g., for x = 29, 16, 31, respectively, thus 33 - 29 = 4 = a(15) = A007369(16) - A007369(15).
		

Crossrefs

Programs

  • Mathematica
    t0[x_] := Table[j, {j, 1, x}]; t=Table[DivisorSigma[1, w], {w, 1, 25000}]; u=Union[%]; c=Complement[t0[25000], u]; Delete[c-RotateRight[c], 1]

Formula

a(n) = A007369(n+1) - A007369(n).
Showing 1-5 of 5 results.