cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007369 Numbers n such that sigma(x) = n has no solution.

Original entry on oeis.org

2, 5, 9, 10, 11, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 33, 34, 35, 37, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 92, 94, 95, 97, 99, 100, 101, 103, 105, 106, 107, 109, 111, 113
Offset: 1

Views

Author

Keywords

Comments

With an initial 1, may be constructed inductively in stages from the list L = {1,2,3,....} by the following sieve procedure. Stage 1. Add 1 as the first term of the sequence a(n) and strike off 1 from L. Stage n+1. Add the first (i.e. leftmost) term k of L as a new term of the sequence a(n) and strike off k, sigma(k), sigma(sigma(k)),.... from L. - Joseph L. Pe, May 08 2002
This sieve is a special case of a more general sieve. Let D be a subset of N and let f be an injection on D satisfying f(n) > n. Define the sieve process as follows: 1. Start with the empty sequence S and let E = D. 2. Append the smallest element s of E to S. 3. Remove s, f(s), f(f(s)), f(f(f(s))), ... from E. 4. Go to step 2. After this sieving process, S = D - f(D). To get the current sequence, take f = sigma and D = {n | n >= 2}. - Max Alekseyev, Aug 08 2005
By analogy with the untouchable numbers (A005114), these numbers could be named "sigma-untouchable". - Daniel Lignon, Mar 28 2014
The asymptotic density of this sequence is 1 (Niven, 1951, Rao and Murty, 1979). - Amiram Eldar, Jul 23 2020

Examples

			a(4) = 10 because there is no x < 10 whose sigma(x) = 10.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A002191.
See A083532 for the gaps, i.e., first differences.
See A048995 for the missed sums of nontrivial divisors.

Programs

  • Mathematica
    a = {}; Do[s = DivisorSigma[1, n]; a = Append[a, s], {n, 1, 115} ]; Complement[ Table[ n, {n, 1, 115} ], Union[a] ]
  • PARI
    list(lim)=my(v=List(),u=vectorsmall(lim\1),t); for(n=1,lim, t=sigma(n); if(t<=lim, u[t]=1)); for(n=2,lim, if(u[n]==0, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Mar 09 2017
    
  • PARI
    A007369_list(LIM,m=0,L=List(),s)={for(n=2,LIM,(s=sigma(n-1))>LIM || bittest(m,s) || m+=1<M. F. Hasler, Mar 12 2018

Formula

A175192(a(n)) = 0, A054973(a(n)) = 0. - Jaroslav Krizek, Mar 01 2010
a(n) < 2n + sqrt(8n). - Charles R Greathouse IV, Oct 23 2015

Extensions

More terms from David W. Wilson

A083533 First difference sequence of A002202. Difference between consecutive possible values of phi(n), the Euler totient function A000010.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 6, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 4, 4, 6, 2, 2, 2, 4, 2, 2, 4, 4, 2, 6, 4, 2, 2, 2, 2, 4, 4, 2, 2, 4, 6, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 6, 2, 10, 2, 4, 4, 2, 2, 4, 2, 2, 4, 4, 2, 6, 4, 2, 2, 4, 6, 4, 2, 4
Offset: 1

Views

Author

Labos Elemer, May 20 2003

Keywords

Crossrefs

Programs

  • Haskell
    a083533 n = a083533_list !! (n-1)
    a083533_list = zipWith (-) (tail a002202_list) a002202_list
    -- Reinhard Zumkeller, Nov 26 2015
    
  • Mathematica
    t=Table[EulerPhi[w], {w, 1, 25000}]; u=Union[%]; Delete[u-RotateRight[u], 1]
  • PARI
    lista(lim) = {my(k1 = 1, k2 = 1); while(k1 < lim, until(istotient(k2), k2++); print1(k2 - k1, ", "); k1 = k2);} \\ Amiram Eldar, Nov 16 2024

Formula

a(n) = A002202(n+1) - A002202(n).

A083531 First difference sequence of A002191. Differences between possible values for sum of divisors of n.

Original entry on oeis.org

2, 1, 2, 1, 1, 4, 1, 1, 1, 3, 2, 4, 4, 2, 1, 1, 4, 2, 1, 1, 2, 2, 4, 6, 2, 1, 3, 2, 1, 5, 4, 2, 4, 2, 4, 6, 1, 2, 3, 2, 4, 2, 4, 2, 2, 2, 6, 1, 3, 2, 1, 1, 4, 1, 5, 2, 4, 6, 2, 4, 2, 2, 2, 2, 4, 3, 3, 2, 4, 2, 1, 3, 6, 2, 1, 3, 2, 4, 6, 2, 4, 1, 5, 2, 4, 2, 4, 6, 2, 6, 4, 3, 1, 2, 2, 4, 2, 4, 2, 6, 2, 2, 2, 4, 6
Offset: 1

Views

Author

Labos Elemer, May 20 2003

Keywords

Examples

			8 and 12 are the 6th and 7th possible values for sigma(x), since they are sum of divisors of x = 7 and x = 11 respectively, while 9, 10, 11 are impossible ones so 12 - 8 = 4 = a(6) = A002191(7) - A002191(6).
From _Michael De Vlieger_, Jul 22 2017: (Start)
First position of values:
Value   First position
    1         2
    2         1
    3        10
    4         6
    5        30
    6        24
    7       277
    8       165
    9       509
   10       150
   11       824
   12       400
   13     10970
   14      1400
   15     10448
   16      1182
   17     18731
   18      2218
   19    209237
   20      3420
   21    127385
   22      6910
   23     28899
   24      5377
(End)
		

Crossrefs

Cf. A002191, A007609, A007369, A083532, A083533, A083534, A083535, A083536, A109323 (start of record gaps in A002191).

Programs

  • Mathematica
    t=Table[DivisorSigma[1, w], {w, 1, 25000}]; u=Union[%]; Delete[u-RotateRight[u], 1]
    (* Second program: *)
    With[{nn = 300}, Differences@ TakeWhile[Union@ DivisorSigma[1, Range@ nn], # < nn &]] (* Michael De Vlieger, Jul 22 2017 *)

A083534 First difference sequence of A007617. Difference between consecutive values not being in the range of phi (A000010).

Original entry on oeis.org

2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, May 20 2003

Keywords

Comments

a(n) is either 2 or 1 since odd numbers are in A007619.
If a(n) = 1 then A007619(n+1) is an even number not in the range of phi.

Examples

			{11,13,14,15,17} are not in the range of phi and the corresponding differences are {2,1,1,2}.
		

Crossrefs

Programs

  • Haskell
    a083534 n = a083534_list !! (n-1)
    a083534_list = zipWith (-) (tail a007617_list) a007617_list
    -- Reinhard Zumkeller, Nov 26 2015
    
  • Mathematica
    t0[x_] := Table[j, {j, 1, x}]; t=Table[EulerPhi[w], {w, 1, 10000}]; u=Union[%]; c=Complement[t0[10000], u]; Delete[c-RotateRight[c], 1]
  • PARI
    list(lim) = {my(k1 = 3, k2 = 3); while(k1 < lim, until(!istotient(k2), k2++); print1(k2 - k1, ", "); k1 = k2); } \\ Amiram Eldar, Feb 22 2025

Formula

a(n) = A007617(n+1) - A007617(n).
Showing 1-4 of 4 results.