cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 50 results. Next

A083532 First difference sequence of A007369. Differences between impossible values for sum of divisors of n.

Original entry on oeis.org

3, 4, 1, 1, 5, 1, 2, 2, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 3, 1, 2, 4, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Labos Elemer, May 20 2003

Keywords

Examples

			29 and 33 are the 15th and 16th nonsense values for sigma(x), since there exist no numbers n of which they are sums of divisors, while {30,31,32} equal sigma(x); e.g., for x = 29, 16, 31, respectively, thus 33 - 29 = 4 = a(15) = A007369(16) - A007369(15).
		

Crossrefs

Programs

  • Mathematica
    t0[x_] := Table[j, {j, 1, x}]; t=Table[DivisorSigma[1, w], {w, 1, 25000}]; u=Union[%]; c=Complement[t0[25000], u]; Delete[c-RotateRight[c], 1]

Formula

a(n) = A007369(n+1) - A007369(n).

A094505 Powers of 2 which are not the sum of divisors of any other number. Powers of 2 present in A007369.

Original entry on oeis.org

2, 16, 64, 2048
Offset: 1

Views

Author

Labos Elemer, Jun 02 2004

Keywords

Comments

The next term, 2^470, is too large to include.

Crossrefs

Formula

a(n) = 2^A078426(n).

A070240 Duplicate of A007369.

Original entry on oeis.org

1, 2, 5, 9, 10, 11, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 33, 34, 35, 37, 41, 43, 45, 46, 47
Offset: 1

Views

Author

Keywords

A002191 Possible values for sum of divisors of n.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 12, 13, 14, 15, 18, 20, 24, 28, 30, 31, 32, 36, 38, 39, 40, 42, 44, 48, 54, 56, 57, 60, 62, 63, 68, 72, 74, 78, 80, 84, 90, 91, 93, 96, 98, 102, 104, 108, 110, 112, 114, 120, 121, 124, 126, 127, 128, 132, 133, 138, 140, 144, 150, 152, 156
Offset: 1

Views

Author

Keywords

Comments

Distinct values attained by the sigma(n) function, in ascending order.
The asymptotic density of this sequence is 0 (Niven, 1951, Rao and Murty, 1979). - Amiram Eldar, Jul 23 2020

Examples

			a(100) = 272, a(10^3) = 3696, a(10^4) = 44496, a(10^5) = 510356, a(10^6) = 5691216. - _M. F. Hasler_, Nov 22 2019
		

References

  • J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 85.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007369. A175192(a(n)) = 1, A054973(a(n)) >= 1. - Jaroslav Krizek, Mar 01 2010
See A083531 for the gaps, i.e., first differences. - M. F. Hasler, Mar 12 2018
Subsequence of A211347.

Programs

  • Maple
    N:= 1000: # to get all entries <= N
    select(`<=`,{seq(numtheory[sigma](i),i=1..N)},N); # Robert Israel, Jun 16 2014
  • Mathematica
    lim=1000; Select[Union[DivisorSigma[1,Range[lim]]], #<=lim &] (* T. D. Noe, May 06 2010 *)
  • PARI
    list(lim)=select(n->n<=lim,Set(vector(lim\=1,n,sigma(n)))) \\ Charles R Greathouse IV, Nov 12 2013
    
  • PARI
    A002191_upto(N,M=N\1+1)=Set(apply(t->min(sigma(t),M), [1..N\1-1]))[^-1] \\ Needs big stack for N >= 10^6; slower alternative: {A002191_upto(N)= my(L=List(1),s); for(n=2,N\=1,N<(s=sigma(n))||listput(L,s));Set(L)}
    A2191=A002191_upto(1e4); A002191(n)={#A2191A002191_upto(n*logint(n,10)+n); A2191[n]} \\ - M. F. Hasler, Nov 22 2019

Formula

a(n)/n < log_10(n) + O(1) with O(1) <= 1 for all n. - M. F. Hasler, Nov 22 2019

A007368 Smallest k such that sigma(x) = k has exactly n solutions.

Original entry on oeis.org

2, 1, 12, 24, 96, 72, 168, 240, 336, 360, 504, 576, 1512, 1080, 1008, 720, 2304, 3600, 5376, 2520, 2160, 1440, 10416, 13392, 3360, 4032, 3024, 7056, 6720, 2880, 6480, 10800, 13104, 5040, 6048, 4320, 13440, 5760, 18720, 20736, 19152, 22680, 43680
Offset: 0

Views

Author

Keywords

Comments

It's not obvious that a(n) exists for all n; I'd like to see a proof. - David Wasserman, Jun 07 2002
Note that k-1 is frequently prime. See A115374 for the least prime. For each n, it appears that there are an infinite number of k such that sigma(x)=k has exactly n solutions. - T. D. Noe, Jan 21 2006
According to Sierpiński, H. J. Kanold proved that there is a k such that sigma(x)=k has n or more solutions. Sierpiński states that Erdős proved that if, for some k, sigma(x)=k has exactly n solutions, then there are an infinite number of such k. - T. D. Noe, Oct 18 2006
Index of the first occurrence of n in A054973. - Jaroslav Krizek, Apr 25 2009

Examples

			a(10) = 504; {204, 220, 224, 246, 284, 286, 334, 415, 451, 503} is the set of x such that sigma(x) = 504.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A115374 (least prime p such that sigma(x)=sigma(p) has exactly n solutions).
Cf. A007369, A007370, A007371, A007372 (n such that sigma(x)=k has 0, 1, 2 and 3 solutions).
Cf. A184393, A184394, A201915 (smallest solution, largest solution, triangle of solutions for sigma(x)=a(n)).

Programs

  • Mathematica
    Needs["Statistics`DataManipulation`"]; s=DivisorSigma[1, Range[10^5]]; f=Frequencies[s]; fs=Sort[f]; tfs=Transpose[fs][[1]]; utfs=Union[tfs]; firstMissing=First[Complement[Range[Last[utfs]], utfs]]; pos=1; Table[While[tfs[[pos]]T. D. Noe *)
    terms = 100; cnt = DivisorSigma[1, Range[terms^3]] // Tally // Sort; a[0] = 2; a[n_] := SelectFirst[cnt, #[[2]] == n&][[1]]; Table[a[n], {n, 0, terms - 1}] (* Jean-François Alcover, Jul 18 2017 *)

Extensions

More terms from David W. Wilson

A007370 Numbers k such that sigma(x) = k has a unique solution.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 13, 14, 15, 20, 28, 30, 36, 38, 39, 40, 44, 57, 62, 63, 68, 74, 78, 91, 93, 102, 110, 112, 121, 127, 133, 138, 150, 158, 160, 162, 164, 171, 174, 176, 183, 194, 195, 198, 200, 204, 212, 217, 222, 230, 242, 255, 256, 258, 260, 266, 278, 282
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Wacław Sierpiński, Elementary Theory of Numbers, Państ. Wydaw. Nauk., Warsaw, 1964, p. 165.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), this sequence (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {250} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 251, a[ [ s ] ]++ ], {n, 1, 250} ]; Select[ Range[ 250 ], a[ [ # ] ] == 1 & ]
  • PARI
    list(lim)=my(v=vectorsmall(lim\1), u=List(), s); for(k=1,#v,s=sigma(k); if(s<=#v, v[s]++)); for(k=1,#v,if(v[k]==1, listput(u,k))); Vec(u) \\ Charles R Greathouse IV, Jun 15 2015
    
  • PARI
    is(k) = invsigmaNum(k) == 1 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A051444 Smallest k such that sigma(k) = n, or 0 if there is no such k, where sigma = A000203 = sum of divisors.

Original entry on oeis.org

1, 0, 2, 3, 0, 5, 4, 7, 0, 0, 0, 6, 9, 13, 8, 0, 0, 10, 0, 19, 0, 0, 0, 14, 0, 0, 0, 12, 0, 29, 16, 21, 0, 0, 0, 22, 0, 37, 18, 27, 0, 20, 0, 43, 0, 0, 0, 33, 0, 0, 0, 0, 0, 34, 0, 28, 49, 0, 0, 24, 0, 61, 32, 0, 0, 0, 0, 67, 0, 0, 0, 30, 0, 73, 0, 0, 0, 45, 0, 57, 0, 0, 0, 44, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Column 1 of A299762. - Omar E. Pol, Mar 14 2018
This is a right inverse of sigma = A000203 on A002191 = range(sigma): if n is in A002191, then there is some x with sigma(x) = n, and by definition a(n) is the smallest such x, so sigma(a(n)) = n. - M. F. Hasler, Nov 22 2019

Examples

			sigma(1) = 1, so a(1) = 1.
There is no k with sigma(k) = 2, since sigma(k) >= k + 1 for all k > 1 and sigma(1) = 1, so a(2) = 0.
sigma(4) = 7, and 4 is the smallest (since only) such number, so a(7) = 4.
6 and 12 are the only k with sigma(k) = 12, so 6 is the smallest and a(12) = 6.
		

References

  • R. K. Guy, Unsolved Problems Theory of Numbers, B1.

Crossrefs

Cf. A000203, A002192, A007626, A007369 (positions of zeros), A299762.

Programs

  • Mathematica
    Do[ k = 1; While[ DivisorSigma[ 1, k ] != n && k < 10^4, k++ ]; If[ k != 10^4, Print[ k ], Print[ 0 ] ], {n, 1, 100} ]
  • PARI
    a(n)=for(k=1,n,if(sigma(k)==n,return(k))); 0 \\ Charles R Greathouse IV, Mar 09 2014
    
  • PARI
    A051444(n)=if(n=invsigma(n),vecmin(n)) \\ See Alekseyev link for invsigma(). An update including invsigmaMin = A051444 is planned. - M. F. Hasler, Nov 21 2019

Extensions

Edited by M. F. Hasler, Nov 22 2019

A007371 Numbers k such that sigma(x) = k has exactly 2 solutions.

Original entry on oeis.org

12, 18, 31, 32, 54, 56, 80, 98, 104, 108, 114, 124, 126, 128, 132, 140, 152, 156, 182, 186, 210, 264, 272, 280, 308, 320, 342, 378, 390, 392, 399, 403, 408, 416, 440, 444, 448, 492, 522, 532, 570, 572, 594, 608, 630, 632, 726, 762, 770, 774, 780, 784, 800
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), this sequence (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {750} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 751, a[ [ s ] ]++ ], {n, 1, 750} ]; Select[ Range[ 750 ], a[ [ # ] ] == 2 & ]
  • PARI
    is(n)=sum(k=1,n,sigma(k)==n)==2 \\ Charles R Greathouse IV, Mar 09 2014
    
  • PARI
    is(k) = invsigmaNum(k) == 2 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A007372 Numbers k such that sigma(x) = k has exactly 3 solutions.

Original entry on oeis.org

24, 42, 48, 60, 84, 90, 224, 228, 234, 248, 270, 294, 324, 450, 468, 528, 558, 620, 640, 660, 810, 882, 888, 896, 968, 972, 1020, 1050, 1104, 1116, 1140, 1216, 1232, 1240, 1274, 1332, 1392, 1400, 1452, 1456, 1464, 1482, 1524, 1530, 1600, 1694, 1716, 1760
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), this sequence (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {2500} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 2501, a[ [ s ] ]++ ], {n, 1, 2500} ]; Select[ Range[ 2500 ], a[ [ # ] ] == 3 & ]
  • PARI
    is(n)=sum(k=1,n,sigma(k)==n)==3 \\ Charles R Greathouse IV, Mar 09 2014
    
  • PARI
    is(k) = invsigmaNum(k) == 3 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A070015 Least m such that the sum of the aliquot parts of m (A001065) equals n, or 0 if no such number exists.

Original entry on oeis.org

1, 2, 0, 4, 9, 0, 6, 8, 10, 15, 14, 21, 121, 27, 22, 16, 12, 39, 289, 65, 34, 18, 20, 57, 529, 95, 46, 69, 28, 115, 841, 32, 58, 45, 62, 93, 24, 155, 1369, 217, 44, 63, 30, 50, 82, 123, 52, 129, 2209, 75, 40, 141, 0, 235, 42, 36, 106, 99, 68, 265, 3481, 371, 118, 64, 56
Offset: 0

Views

Author

Labos Elemer, Apr 12 2002

Keywords

Comments

For odd n >= 9, a(n) <= A073046((n-1)/2). - Max Alekseyev, Sep 01 2025

Examples

			For n=128: a(128)=16129, divisors={1,127,16129}, 1+127=sigma(n)-n=128 and 16129 is the smallest.
		

Crossrefs

See A359132 for another version.

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]-x; t=Table[0, {128}]; Do[c=f[n]; If[c<129&&t[[c]]==0, t[[c]]=n], {n, 1000000}]; t

Formula

a(n) = min(x, A001065(x)=n) or a(n)=0 if n is an untouchable number (i.e., if from A005114).

Extensions

a(0)=1 prepended by Max Alekseyev, Sep 01 2025
Showing 1-10 of 50 results. Next