A070015 Least m such that the sum of the aliquot parts of m (A001065) equals n, or 0 if no such number exists.
1, 2, 0, 4, 9, 0, 6, 8, 10, 15, 14, 21, 121, 27, 22, 16, 12, 39, 289, 65, 34, 18, 20, 57, 529, 95, 46, 69, 28, 115, 841, 32, 58, 45, 62, 93, 24, 155, 1369, 217, 44, 63, 30, 50, 82, 123, 52, 129, 2209, 75, 40, 141, 0, 235, 42, 36, 106, 99, 68, 265, 3481, 371, 118, 64, 56
Offset: 0
Examples
For n=128: a(128)=16129, divisors={1,127,16129}, 1+127=sigma(n)-n=128 and 16129 is the smallest.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 9884 terms from Richard J. Mathar)
- Mersenne Forum, Given sigma(n)-n, find the smallest possible n
Crossrefs
Programs
-
Mathematica
f[x_] := DivisorSigma[1, x]-x; t=Table[0, {128}]; Do[c=f[n]; If[c<129&&t[[c]]==0, t[[c]]=n], {n, 1000000}]; t
Formula
Extensions
a(0)=1 prepended by Max Alekseyev, Sep 01 2025
Comments