cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A153077 Largest number m such that sigma(m) = A002110(n) where A002110(n) is the product of the first n primes.

Original entry on oeis.org

5, 29, 116, 2309, 30029, 272264, 6715161, 154448901, 3696967556, 126321788241, 5984466237725, 304250263527209, 7475863618097156, 495878856926202725, 17521052944725830450, 1749278213298193453469, 65483587607609351045025
Offset: 2

Views

Author

Donovan Johnson, Dec 19 2008

Keywords

Examples

			a(9) = 154448901. Sigma(154448901) = A002110(9) = 223092870 = 2*3*5*7*11*13*17*19*23.
		

Crossrefs

Formula

a(n) = A057637(A002110(n)). - Chandler
a(A057704(n)) = A002110(A057704(n)) - 1. - Ray Chandler

Extensions

Extended by Ray Chandler, Dec 28 2008
Terms a(22)-a(24) in b-file from Max Alekseyev, Jan 29 2012

A153078 Number of values of m such that sigma(m) = A002110(n) where A002110(n) is the product of the first n primes.

Original entry on oeis.org

0, 1, 1, 2, 2, 5, 2, 4, 5, 3, 7, 5, 10, 2, 8, 4, 5, 6, 11, 32, 42, 68, 24, 87
Offset: 1

Views

Author

Donovan Johnson, Dec 19 2008

Keywords

Examples

			a(10) = 3 because 2388809736, 3450503048 and 3696967556 are the only numbers with a sigma value = A002110(10). A002110(10) = 6469693230 = 2*3*5*7*11*13*17*19*23*29.
		

Crossrefs

Formula

a(n) = A054973(A002110(n)). - Ray Chandler, Dec 28 2008

Extensions

a(12)-a(21) from Ray Chandler, Dec 28 2008
a(22)-a(24) from Max Alekseyev, Jan 27 2012

A152562 Smallest number m such that sigma(m) has exactly n distinct prime factors.

Original entry on oeis.org

2, 5, 20, 104, 936, 13842, 188424, 3249576, 81239400, 2388809736, 59720243400
Offset: 1

Views

Author

Donovan Johnson, Dec 09 2008

Keywords

Comments

a(12) <= 4440632687496. - Donovan Johnson, Mar 31 2013
From Daniel Suteu, May 24 2022: (Start)
a(12) <= 2571228006912,
a(13) <= 85266458294400,
a(14) <= 4638227848902900,
a(15) <= 209103527633041800,
a(16) <= 10931190635671518600,
a(17) <= 545209768960172964900,
a(18) <= 34893425213451069753600,
a(19) <= 2000640771807316185690000. (End)

Examples

			a(9) = 81239400; sigma(81239400) = 300690390 = 2*3*5*7*11*13*17*19*31 (9 distinct prime factors).
		

Crossrefs

Programs

  • PARI
    v=vector(9); for(m=2, 81239400, n=omega(sigma(m)); if(v[n]==0, v[n]=m; print(n " " v[n]))) /* Donovan Johnson, Mar 31 2013 */

Formula

a(n) <= A153076(n), for n >= 2. - Daniel Suteu, May 24 2022

A291373 a(n) is the smallest number k such that A001065(k) = A002110(n), or 0 if no such k exists.

Original entry on oeis.org

2, 0, 6, 841, 0, 1722, 30018, 0, 0, 0, 4057230930, 0, 0, 92568222856376123089883329681
Offset: 0

Views

Author

Altug Alkan, Aug 23 2017

Keywords

Comments

For n in A057704, 0 < a(n) <= (A002110(n)-1)^2. - Max Alekseyev, Sep 01 2025

Examples

			a(5) = 1722 because sigma(1722) - 1722 = 2*3*5*7*11 = A002110(5) and 1722 is the least number with this property.
		

Crossrefs

Formula

a(n) = A070015(A002110(n)). - Michel Marcus, Aug 25 2017

Extensions

a(7) and a(10) from Giovanni Resta, Aug 23 2017
a(8)-a(9), a(11)-a(13) from Max Alekseyev, Sep 04 2025
Showing 1-4 of 4 results.