cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000203 a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (this sequence) (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
A number n is abundant if sigma(n) > 2n (cf. A005101), perfect if sigma(n) = 2n (cf. A000396), deficient if sigma(n) < 2n (cf. A005100).
a(n) is the number of sublattices of index n in a generic 2-dimensional lattice. - Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001 [In the language of group theory, a(n) is the number of index-n subgroups of Z x Z. - Jianing Song, Nov 05 2022]
The sublattices of index n are in one-to-one correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} d = sigma(n), which is a(n). A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * Product_{p|n} (1+1/p), which is A001615. [Cf. Grady reference.]
Sum of number of common divisors of n and m, where m runs from 1 to n. - Naohiro Nomoto, Jan 10 2004
a(n) is the cardinality of all extensions over Q_p with degree n in the algebraic closure of Q_p, where p>n. - Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004. Cf. A100976, A100977, A100978 (p-adic extensions).
Let s(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + a(n-15) - a(n-22) - a(n-26) + ..., then a(n) = s(n) if n is not pentagonal, i.e., n != (3 j^2 +- j)/2 (cf. A001318), and a(n) is instead s(n) - ((-1)^j)*n if n is pentagonal. - Gary W. Adamson, Oct 05 2008 [corrected Apr 27 2012 by William J. Keith based on Ewell and by Andrey Zabolotskiy, Apr 08 2022]
Write n as 2^k * d, where d is odd. Then a(n) is odd if and only if d is a square. - Jon Perry, Nov 08 2012
Also total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 16 2013
Note that sigma(3^4) = 11^2. On the other hand, Kanold (1947) shows that the equation sigma(q^(p-1)) = b^p has no solutions b > 2, q prime, p odd prime. - N. J. A. Sloane, Dec 21 2013, based on postings to the Number Theory Mailing List by Vladimir Letsko and Luis H. Gallardo
Limit_{m->infinity} (Sum_{n=1..prime(m)} a(n)) / prime(m)^2 = zeta(2)/2 = Pi^2/12 (A072691). See more at A244583. - Richard R. Forberg, Jan 04 2015
a(n) + A000005(n) is an odd number iff n = 2m^2, m>=1. - Richard R. Forberg, Jan 15 2015
a(n) = a(n+1) for n = 14, 206, 957, 1334, 1364 (A002961). - Zak Seidov, May 03 2016
Equivalent to the Riemann hypothesis: a(n) < H(n) + exp(H(n))*log(H(n)), for all n>1, where H(n) is the n-th harmonic number (Jeffrey Lagarias). See A057641 for more details. - Ilya Gutkovskiy, Jul 05 2016
a(n) is the total number of even parts in the partitions of 2*n into equal parts. More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 18 2019
From Jianing Song, Nov 05 2022: (Start)
a(n) is also the number of order-n subgroups of C_n X C_n, where C_n is the cyclic group of order n. Proof: by the correspondence theorem in the group theory, there is a one-to-one correspondence between the order-n subgroups of C_n X C_n = (Z x Z)/(nZ x nZ) and the index-n subgroups of Z x Z containing nZ x nZ. But an index-n normal subgroup of a (multiplicative) group G contains {g^n : n in G} automatically. The desired result follows from the comment from Naohiro Nomoto above.
The number of subgroups of C_n X C_n that are isomorphic to C_n is A001615(n). (End)

Examples

			For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
  • H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
  • Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
  • M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
  • A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
  • G. Pólya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 91, 395.
  • Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.

Crossrefs

See A034885, A002093 for records. Bisections give A008438, A062731. Values taken are listed in A007609. A054973 is an inverse function.
For partial sums see A024916.
Row sums of A127093.
Cf. A009194, A082062 (gcd(a(n),n) and its largest prime factor), A179931, A192795 (gcd(a(n),A001157(n)) and largest prime factor).
Cf. also A034448 (sum of unitary divisors).
Cf. A007955 (products of divisors).
A001227, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016

Programs

  • GAP
    A000203:=List([1..10^2],n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [SumOfDivisors(n): n in [1..70]];
    
  • Magma
    [DivisorSigma(1,n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
  • Mathematica
    Table[ DivisorSigma[1, n], {n, 100}]
    a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
  • Maxima
    makelist(divsum(n),n,1,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • MuPAD
    numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    max_n = 30; ser = - sum(k=1,max_n,log(1-x^k)); a(n) = polcoeff(ser,n)*n \\ Gottfried Helms, Aug 10 2009
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
    (APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
  • SageMath
    [sigma(n, 1) for n in range(1, 71)]  # Zerinvary Lajos, Jun 04 2009
    
  • Scheme
    (definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from http://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
    
  • Scheme
    (define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
    

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1). - David W. Wilson, Aug 01 2001
For the following bounds and many others, see Mitrinovic et al. - N. J. A. Sloane, Oct 02 2017
If n is composite, a(n) > n + sqrt(n).
a(n) < n*sqrt(n) for all n.
a(n) < (6/Pi^2)*n^(3/2) for n > 12.
G.f.: -x*deriv(eta(x))/eta(x) where eta(x) = Product_{n>=1} (1-x^n). - Joerg Arndt, Mar 14 2010
L.g.f.: -log(Product_{j>=1} (1-x^j)) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Dirichlet convolution of phi(n) and tau(n), i.e., a(n) = sum_{d|n} phi(n/d)*tau(d), cf. A000010, A000005.
a(n) is odd iff n is a square or twice a square. - Robert G. Wilson v, Oct 03 2001
a(n) = a(n*prime(n)) - prime(n)*a(n). - Labos Elemer, Aug 14 2003 (Clarified by Omar E. Pol, Apr 27 2016)
a(n) = n*A000041(n) - Sum_{i=1..n-1} a(i)*A000041(n-i). - Jon Perry, Sep 11 2003
a(n) = -A010815(n)*n - Sum_{k=1..n-1} A010815(k)*a(n-k). - Reinhard Zumkeller, Nov 30 2003
a(n) = f(n, 1, 1, 1), where f(n, i, x, s) = if n = 1 then s*x else if p(i)|n then f(n/p(i), i, 1+p(i)*x, s) else f(n, i+1, 1, s*x) with p(i) = i-th prime (A000040). - Reinhard Zumkeller, Nov 17 2004
Recurrence: n^2*(n-1)*a(n) = 12*Sum_{k=1..n-1} (5*k*(n-k) - n^2)*a(k)*a(n-k), if n>1. - Dominique Giard (dominique.giard(AT)gmail.com), Jan 11 2005
G.f.: Sum_{k>0} k * x^k / (1 - x^k) = Sum_{k>0} x^k / (1 - x^k)^2. Dirichlet g.f.: zeta(s)*zeta(s-1). - Michael Somos, Apr 05 2003. See the Hardy-Wright reference, p. 312. first equation, and p. 250, Theorem 290. - Wolfdieter Lang, Dec 09 2016
For odd n, a(n) = A000593(n). For even n, a(n) = A000593(n) + A074400(n/2). - Jonathan Vos Post, Mar 26 2006
Equals the inverse Moebius transform of the natural numbers. Equals row sums of A127093. - Gary W. Adamson, May 20 2007
A127093 * [1/1, 1/2, 1/3, ...] = [1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, ...]. Row sums of triangle A135539. - Gary W. Adamson, Oct 31 2007
a(n) = A054785(2*n) - A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
a(n) = n*Sum_{k=1..n} A060642(n,k)/k*(-1)^(k+1). - Vladimir Kruchinin, Aug 10 2010
Dirichlet convolution of A037213 and A034448. - R. J. Mathar, Apr 13 2011
G.f.: A(x) = x/(1-x)*(1 - 2*x*(1-x)/(G(0) - 2*x^2 + 2*x)); G(k) = -2*x - 1 - (1+x)*k + (2*k+3)*(x^(k+2)) - x*(k+1)*(k+3)*((-1 + (x^(k+2)))^2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
a(n) = A001065(n) + n. - Mats Granvik, May 20 2012
a(n) = A006128(n) - A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A196020(n,k). - conjectured by Omar E. Pol, Feb 02 2013, and proved by Max Alekseyev, Nov 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A000330(k)*A000716(n-A000217(k)). - Mircea Merca, Mar 05 2014
a(n) = A240698(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
a(n) = Sum_{d^2|n} A001615(n/d^2) = Sum_{d^3|n} A254981(n/d^3). - Álvar Ibeas, Mar 06 2015
a(3*n) = A144613(n). a(3*n + 1) = A144614(n). a(3*n + 2) = A144615(n). - Michael Somos, Jul 19 2015
a(n) = Sum{i=1..n} Sum{j=1..i} cos((2*Pi*n*j)/i). - Michel Lagneau, Oct 14 2015
a(n) = A000593(n) + A146076(n). - Omar E. Pol, Apr 05 2016
a(n) = A065475(n) + A048050(n). - Omar E. Pol, Nov 28 2016
a(n) = (Pi^2*n/6)*Sum_{q>=1} c_q(n)/q^2, with the Ramanujan sums c_q(n) given in A054533 as a c_n(k) table. See the Hardy reference, p. 141, or Hardy-Wright, Theorem 293, p. 251. - Wolfdieter Lang, Jan 06 2017
G.f. also (1 - E_2(q))/24, with the g.f. E_2 of A006352. See e.g., Hardy, p. 166, eq. (10.5.5). - Wolfdieter Lang, Jan 31 2017
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(n) + A162296(n).
a(n) = A092261(n) * A295294(n). [This can be further expanded, see comment in A291750.] (End)
a(n) = A000593(n) * A038712(n). - Ivan N. Ianakiev and Omar E. Pol, Nov 26 2017
a(n) = Sum_{q=1..n} c_q(n) * floor(n/q), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018
a(n) = Sum_{k=1..n} gcd(n, k) / phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 21 2018
a(n) = (2^(1 + (A000005(n) - A001227(n))/(A000005(n) - A183063(n))) - 1)*A000593(n) = (2^(1 + (A183063(n)/A001227(n))) - 1)*A000593(n). - Omar E. Pol, Nov 03 2018
a(n) = Sum_{i=1..n} tau(gcd(n, i)). - Ridouane Oudra, Oct 15 2019
From Peter Bala, Jan 19 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n^2)*(x^n + n*(1 - x^(2*n)))/(1 - x^n)^2 - differentiate equation 5 in Arndt w.r.t. x, and set x = 1.
A(x) = F(x) + G(x), where F(x) is the g.f. of A079667 and G(x) is the g.f. of A117004. (End)
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
With the convention that a(n) = 0 for n <= 0 we have the recurrence a(n) = t(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where t(n) = (-1)^(m+1)*(2*m+1)*n/3 if n = m*(m + 1)/2, with m positive, is a triangular number else t(n) = 0. For example, n = 10 = (4*5)/2 is a triangular number, t(10) = -30, and so a(10) = -30 + 3*a(9) - 5*a(7) + 7*a(4) = -30 + 39 - 40 + 49 = 18. - Peter Bala, Apr 06 2022
Recurrence: a(p^x) = p*a(p^(x-1)) + 1, if p is prime and for any integer x. E.g., a(5^3) = 5*a(5^2) + 1 = 5*31 + 1 = 156. - Jules Beauchamp, Nov 11 2022
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = A319462. - Vaclav Kotesovec, May 07 2023
a(n) < (7n*A001221(n) + 10*n)/6 [Duncan, 1961] (see Duncan and Tattersall). - Stefano Spezia, Jul 13 2025

A051444 Smallest k such that sigma(k) = n, or 0 if there is no such k, where sigma = A000203 = sum of divisors.

Original entry on oeis.org

1, 0, 2, 3, 0, 5, 4, 7, 0, 0, 0, 6, 9, 13, 8, 0, 0, 10, 0, 19, 0, 0, 0, 14, 0, 0, 0, 12, 0, 29, 16, 21, 0, 0, 0, 22, 0, 37, 18, 27, 0, 20, 0, 43, 0, 0, 0, 33, 0, 0, 0, 0, 0, 34, 0, 28, 49, 0, 0, 24, 0, 61, 32, 0, 0, 0, 0, 67, 0, 0, 0, 30, 0, 73, 0, 0, 0, 45, 0, 57, 0, 0, 0, 44, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Column 1 of A299762. - Omar E. Pol, Mar 14 2018
This is a right inverse of sigma = A000203 on A002191 = range(sigma): if n is in A002191, then there is some x with sigma(x) = n, and by definition a(n) is the smallest such x, so sigma(a(n)) = n. - M. F. Hasler, Nov 22 2019

Examples

			sigma(1) = 1, so a(1) = 1.
There is no k with sigma(k) = 2, since sigma(k) >= k + 1 for all k > 1 and sigma(1) = 1, so a(2) = 0.
sigma(4) = 7, and 4 is the smallest (since only) such number, so a(7) = 4.
6 and 12 are the only k with sigma(k) = 12, so 6 is the smallest and a(12) = 6.
		

References

  • R. K. Guy, Unsolved Problems Theory of Numbers, B1.

Crossrefs

Cf. A000203, A002192, A007626, A007369 (positions of zeros), A299762.

Programs

  • Mathematica
    Do[ k = 1; While[ DivisorSigma[ 1, k ] != n && k < 10^4, k++ ]; If[ k != 10^4, Print[ k ], Print[ 0 ] ], {n, 1, 100} ]
  • PARI
    a(n)=for(k=1,n,if(sigma(k)==n,return(k))); 0 \\ Charles R Greathouse IV, Mar 09 2014
    
  • PARI
    A051444(n)=if(n=invsigma(n),vecmin(n)) \\ See Alekseyev link for invsigma(). An update including invsigmaMin = A051444 is planned. - M. F. Hasler, Nov 21 2019

Extensions

Edited by M. F. Hasler, Nov 22 2019

A085790 Integers sorted by the sum of their divisors.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 6, 11, 9, 13, 8, 10, 17, 19, 14, 15, 23, 12, 29, 16, 25, 21, 31, 22, 37, 18, 27, 20, 26, 41, 43, 33, 35, 47, 34, 53, 28, 39, 49, 24, 38, 59, 61, 32, 67, 30, 46, 51, 55, 71, 73, 45, 57, 79, 44, 65, 83, 40, 58, 89, 36, 50, 42, 62, 69, 77, 52, 97, 101, 63, 103, 85
Offset: 1

Views

Author

Hugo Pfoertner, Jul 23 2003

Keywords

Comments

Integers having the same sum of divisors are sorted in ascending order, e.g., sigma(14)=sigma(15)=sigma(23)=24 -> a(15)=14, a(16)=15, a(17)=23.
Also an irregular triangle where the k-th row consists of all numbers with divisor sum k. See A054973(k) for the k-th row length. - Jeppe Stig Nielsen, Jan 29 2015
By definition this is a permutation of the positive integers. Also positive integers of A299762. - Omar E. Pol, Mar 14 2018

Examples

			a(9) = 9, a(10) = 13, a(11) = 8 because sigma(9) = 9 + 3 + 1 = 13, sigma(13) = 13 + 1 = 14, sigma(8) = 8 + 4 + 2 + 1 = 15 and there are no other numbers with those sigma values.
Irregular triangle starts: (row numbers to the left are not part of the sequence)
   n : row(n)
   1 : 1,
   2 :
   3 : 2,
   4 : 3,
   5 :
   6 : 5,
   7 : 4,
   8 : 7,
   9 :
  10 :
  11 :
  12 : 6, 11,
  13 : 9,
  14 : 13,
  15 : 8,
  16 :
  17 :
  18 : 10, 17,
  19 :
  20 : 19,
  21 :
  22 :
  23 :
  24 : 14, 15, 23,
  25 :
- _Jeppe Stig Nielsen_, Feb 02 2015, edited by _M. F. Hasler_, Nov 21 2019
		

Crossrefs

Cf. A000203 (sigma), A007609 (values taken by sigma, with multiplicity), A002191 (possible values for sigma), A002192 (first column).
Cf. A152454 (similar sequence for proper divisors only (aliquot parts)).

Programs

  • Mathematica
    SortBy[Table[{n,DivisorSigma[1,n]},{n,120}],Last][[;;,1]] (* Harvey P. Dale, Sep 10 2024 *)
  • PARI
    A085790_row(n)=invsigma(n) \\ Cf. Alekseyev link for invsigma(). - M. F. Hasler, Nov 21 2019

A299762 Irregular triangle T(n,k) read by rows in which row n lists the positive integers whose sum of divisors is n, or 0 if no such integer exists.

Original entry on oeis.org

1, 0, 2, 3, 0, 5, 4, 7, 0, 0, 0, 6, 11, 9, 13, 8, 0, 0, 10, 17, 0, 19, 0, 0, 0, 14, 15, 23, 0, 0, 0, 12, 0, 29, 16, 25, 21, 31, 0, 0, 0, 22, 0, 37, 18, 27, 0, 20, 26, 41, 0, 43, 0, 0, 0, 33, 35, 47, 0, 0, 0, 0, 0, 34, 53, 0, 28, 39, 49, 0, 0, 24, 38, 59, 0, 61, 32, 0, 0, 0, 0, 67, 0, 0, 0, 30, 46, 51, 55, 71, 0, 73
Offset: 1

Views

Author

Omar E. Pol, Mar 12 2018

Keywords

Comments

Essentially the same as the triangle described in the example section of A085790, but with 0's added in empty rows.
Are the records the same as A008578?

Examples

			First 24 rows of triangle T(n,k):
-----------------------
. n / k:  1   2   3 ...
-----------------------
| 1|      1;
| 2|      0;
| 3|      2;
| 4|      3;
| 5|      0;
| 6|      5;
| 7|      4;
| 8|      7;
| 9|      0;
|10|      0;
|11|      0;
|12|      6, 11;
|13|      9;
|14|     13;
|15|      8;
|16|      0;
|17|      0;
|18|     10, 17;
|19|      0;
|20|     19;
|21|      0;
|22|      0;
|23|      0;
|24|     14, 15, 23;
...
For n = 23 there are no positive integers whose sum of divisors is 23, so T(23, 1) = 0, which is the only element in the 23rd row of the triangle.
For n = 24 there are three positive integers whose sum of divisors is 24; they are 14, 15 and 23, since sigma(14) = 1 + 2 + 7 + 14 = 24, sigma(15) = 1 + 3 + 5 + 15 = 24 and sigma(23) = 1 + 23 = 24, so the 24th row of the triangle is [14, 15, 23].
		

Crossrefs

Row sums give A258913.
Column 1 gives A051444.
Right border gives A057637.
Positive terms give A085790.
Row n has A054973(n) positive integers.
Positive terms in the first column give A002192.
Indices of the rows that contain a zero give A007369.
Indices of the rows that contain positive terms give A002191.

Programs

  • Mathematica
    With[{nn = 74}, ReplacePart[ConstantArray[{0}, nn], PositionIndex@ Array[DivisorSigma[1, #] &, nn]]] // Flatten (* Michael De Vlieger, Mar 16 2018 *)

Formula

sigma(T(n,k)) = n, if T(n,k) >= 1.

A007626 Sum of divisors of superabundant numbers (A004394).

Original entry on oeis.org

1, 3, 7, 12, 28, 60, 91, 124, 168, 360, 546, 744, 1170, 2418, 2880, 4368, 5952, 9360, 19344, 39312, 59520, 99944, 112320, 232128, 471744, 714240, 1199328, 1451520, 2437344, 2926080, 3249792, 6604416, 9999360
Offset: 1

Views

Author

Keywords

Comments

Local maxima of sigma(n), the sum of divisors function A000203.
Same as A063072 for the first 19 terms. - T. D. Noe, Jul 01 2008

Crossrefs

See A034885 and A002093 for another version.

Programs

  • Mathematica
    Reap[ For[ n=1; a=0, n <= 3*10^6, n++, s = DivisorSigma[1, n]; b = s/n; If[ b>a, a=b; Print[s]; Sow[s]]]][[2, 1]] (* Jean-François Alcover, Apr 02 2013 *)
    Join[{1},DeleteDuplicates[Select[{#[[1]],#[[2]],#[[2]]/#[[1]]}&/@Table[ {n,DivisorSigma[1,n]}, {n,10^6}],#[[3]]>1&],GreaterEqual[#1[[3]],#2[[3]]]&][[All,2]]] (* The program generates the first 31 terms of the sequence. *) (* Harvey P. Dale, Oct 04 2022 *)

Formula

a(n) = A000203(A004394(n)). - Amiram Eldar, Sep 25 2021

A074625 Triangular array T(n,k) (n >= 1, 1 <= k <= n) read by rows, where T(n,k) = smallest number x such that Mod[sigma[x],n]=k.

Original entry on oeis.org

1, 1, 3, 1, 7, 2, 1, 5, 2, 3, 1, 4, 2, 3, 8, 1, 7, 2, 3, 2401, 5, 1, 29, 2, 3, 6, 5, 4, 1, 10, 2, 3, 9, 5, 4, 7, 1, 19, 2, 3, 13, 5, 4, 7, 10, 1, 6, 2, 3, 8, 5, 4, 7, 18, 19, 1, 9, 2, 3, 24, 5, 4, 7, 16, 21, 43, 1, 13, 2, 3, 2401, 5, 4, 7, 49, 31213, 9604, 6, 1, 8, 2, 3, 10, 5, 4, 7, 33, 22
Offset: 1

Views

Author

Labos Elemer, Aug 26 2002

Keywords

Comments

In the table output, one can observe constant diagonals (or lines in the square output). The indices of these are: 1, 3, 4, 6, 7, 8, 12, 13, ... (see A002191). And the corresponding values are: 1, 2, 3, 5, 4, 7, 6, 9, ... (see A002192). - Michel Marcus, Dec 19 2013

Examples

			Triangle begins
1;
1,3;
1,7,2;
1,5,2,3;
1,4,2,3,8; ...
		

Crossrefs

Programs

  • Mathematica
    {k=0, s=0, fl=1}; Table[Print["#"]; Table[fl=1; Print[{r, m}]; Do[s=Mod[DivisorSigma[1, n], m]; If[(s==r)&&(fl==1), Print[n]; fl=0], {n, 1, 150000}], {r, 0, m-1}], {m, 1, 25}]

Formula

Min{x; Mod[sigma[x], n]=r}, r=1..n, n=1, ...

A173336 Numbers k such that tau(phi(k)) = sigma(sopf(k)).

Original entry on oeis.org

8, 9, 25, 36, 49, 54, 96, 100, 320, 441, 495, 704, 891, 1029, 1080, 1089, 1260, 1331, 1386, 1400, 1617, 1701, 1750, 1815, 1848, 1950, 1960, 2079, 2541, 2574, 2704, 2850, 2880, 3000, 3360, 3430, 3510, 3861, 4125, 4275, 4680, 4704, 4719, 4800, 5070, 5096
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

tau(k) is the number of divisors of k (A000005); phi(k) is the Euler totient function (A000010); sigma(k) is the sum of divisors of k (A000203); and sopf(k) is the sum of the distinct primes dividing k without repetition (A008472).

Examples

			8 is in the sequence because phi(8) = 4, tau(4)=3, sopf(8)=2 and sigma(2) = 3 ;
9 is in the sequence because phi(9) = 6, tau(6)=4, sopf(9)=3 and sigma(3) = 4.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Magma
    [m:m in [2..5100]|#Divisors(EulerPhi(m)) eq &+Divisors(&+PrimeDivisors(m))]; // Marius A. Burtea, Jul 10 2019
    
  • Maple
    with(numtheory): for n from 1 to 18000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)):if tau(phi(n)) = sigma(t2) then print (n): else fi : od :
  • Mathematica
    sopf[n_] := Plus @@ (First@# & /@ FactorInteger[n]); Select[Range[2, 5100], DivisorSigma[0,EulerPhi[#]] == DivisorSigma[1, sopf[#]] &] (* Amiram Eldar, Jul 09 2019 *)
  • PARI
    isok(n) = (n>1) && numdiv(eulerphi(n)) == sigma(vecsum(factor(n)[, 1])); \\ Michel Marcus, Jul 10 2019

Formula

k such that A062821(k) = sigma(A008472(k)).

Extensions

Corrected and edited by Michel Lagneau, Apr 25 2010
Edited by D. S. McNeil, Nov 20 2010
Showing 1-7 of 7 results.