cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A070982 Smallest integer k such that n divides sigma(k).

Original entry on oeis.org

1, 3, 2, 3, 8, 5, 4, 7, 10, 19, 43, 6, 9, 12, 8, 21, 67, 10, 37, 19, 20, 43, 137, 14, 149, 45, 34, 12, 173, 24, 16, 21, 86, 67, 76, 22, 73, 37, 18, 27, 163, 20, 257, 43, 40, 137, 281, 33, 52, 149, 101, 63, 211, 34, 109, 28, 49, 173, 353, 24, 169, 48, 32, 93, 72, 86, 401
Offset: 1

Views

Author

Benoit Cloitre, May 24 2002

Keywords

Crossrefs

Right diagonal of A074625.
Cf. A005179 (analog for number of divisors), A061026 (analog for Euler totient).

Programs

  • Mathematica
    a = ConstantArray[1, 67]; k = 1; While[Length[vac = Rest[Flatten[Position[a, 1]]]] > 0, k++; a[[Intersection[Divisors[DivisorSigma[1, k]], vac]]] *= k]; a (* Ivan Neretin, May 15 2015 *)
    With[{dsk=Table[{k,DivisorSigma[1,k]},{k,500}]},Table[SelectFirst[ dsk, Divisible[#[[2]],n]&],{n,70}]][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 04 2018 *)
  • PARI
    a(n)=my(s); while(sigma(s++)%n, ); s

Formula

a(n) = min( k : sigma(k) == 0 mod(n) ).
Sum(k=1, n, a(k)) seems to be asymptotic to c*n^2 with probably 1.1 < c < 1.2.
By Xylouris' form of Linnk's theorem, a(n) << n^5. Can this be improved? - Charles R Greathouse IV, Mar 09 2017

A084303 Smallest x such that sigma(x) mod 6 = n.

Original entry on oeis.org

5, 1, 7, 2, 3, 2401
Offset: 0

Views

Author

Labos Elemer, Jun 02 2003

Keywords

Comments

Row 6 of A074625 (apart from different ordering). - Michel Marcus, Dec 19 2013

Examples

			n=5: sigma(2401) = 1+7+49+343+2401 = 2801 = 6*466+5, hence a(5)=2401.
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[Mod[DivisorSigma[1, k], 6] != n, k++]; k, {n, 0, 5}] (* Michael De Vlieger, Mar 25 2017 *)
  • PARI
    a(n) = {my(x = 1); while((sigma(x) % 6) != n, x++); x;} \\ Michel Marcus, Dec 18 2013

A097014 Smallest x such that sigma(x) mod 210 = n.

Original entry on oeis.org

104, 1, 211, 2, 3, 8311689, 5, 4, 7, 3698, 399, 130321, 6, 9, 13, 8, 1477, 2458624, 10, 725904, 19, 676, 6751, 18766224, 14, 52707600, 489, 24649, 12, 220433409, 29, 16, 21, 1250, 2779, 3694084, 22, 5184, 37, 18, 27, 1382976, 20, 729, 43, 128, 217
Offset: 0

Views

Author

Labos Elemer, Aug 19 2004

Keywords

Comments

Compare with A084303 and A097013.
Row 210 of A074625 (apart from different ordering). - Michel Marcus, Dec 19 2013

Examples

			Several numbers belonging to odd residues are either large squares or twice-squares.
E.g.: r = n = 209: a(209) = 36324729 = 6027^2, sigma(6027^2) = 210*172974 + 209.
Full set is easily available running through squares or twice squares.
		

Crossrefs

A097013 Smallest x such that sigma(x) mod 30 = n.

Original entry on oeis.org

24, 1, 21, 2, 3, 923521, 5, 4, 7, 18, 27, 2401, 6, 9, 13, 8, 217, 9604, 10, 1089, 19, 98, 91, 21609, 14, 14641, 28, 49, 12, 2614689
Offset: 0

Views

Author

Labos Elemer, Aug 19 2004

Keywords

Comments

Compare with A084303.
Row 30 of A074625 (apart from different ordering). - Michel Marcus, Dec 19 2013

Crossrefs

Programs

  • Mathematica
    t=Table[Mod[DivisorSigma[1, w], 30], {w, 1, 2700000}]; Table[Min[Flatten[Position[t, j]]], {j, 0, 29}]

A233929 Smallest x such that sigma(x) == n-1 (mod n).

Original entry on oeis.org

1, 1, 7, 2, 3, 2401, 5, 4, 7, 18, 21, 9604, 6, 9, 13, 8, 44, 21609, 10, 18, 19, 289, 36, 9604, 14, 162, 57, 72, 12, 2614689, 29, 16, 21, 625, 63, 38416, 22, 4608, 37, 18, 27, 21609, 20, 289, 43, 36, 50, 38416, 33, 196, 111, 162, 157, 28561, 34, 1296, 28, 49
Offset: 1

Views

Author

Michel Marcus, Dec 18 2013

Keywords

Comments

Right subdiagonal of A074625.
Records values are: 1, 7, 2401, 9604, 21609, 2614689, 21215236, 36324729, 53304601, 338964921, 431642176, 528264256, 1307979556, ... obtained at indices: 1, 3, 6, 12, 18, 30, 60, 210, 288, 384, 534, 630, 732. - Michel Marcus, Dec 22 2013

Crossrefs

Programs

  • PARI
    a(n) = {x = 1; while ((sigma(x) % n) != (n - 1), x++); x;} \\ Michel Marcus, Dec 18 2013

A074634 Cototient-remainder triangle: triangular array T(n,k) (n >= 1, 0 <= k < n) read by rows, where T(n,k) = smallest number x such that cototient(x) mod n = k.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 4, 9, 1, 2, 4, 9, 6, 1, 2, 4, 9, 6, 25, 1, 2, 4, 9, 6, 18, 10, 1, 2, 4, 9, 6, 25, 10, 15, 1, 2, 4, 9, 6, 25, 10, 15, 12, 1, 2, 4, 9, 6, 25, 10, 15, 12, 21, 1, 2, 4, 9, 6, 24, 10, 15, 12, 21, 45, 1, 2, 4, 9, 6, 25, 10, 15, 12, 21, 30, 35, 1, 2, 4, 9, 6, 25, 10, 15, 12
Offset: 1

Views

Author

Labos Elemer, Aug 29 2002

Keywords

Examples

			1; 1,2; 1,2,4; 1,2,4,9; 1,2,4,9,6; 1,2,4,9,6,25; 1,2,4,9,6,18,10; 1,2,4,9,6,25,10,15; 1,2,4,9,6,25,10,15,12, ...
		

Crossrefs

Programs

  • Mathematica
    {k=0, s=0, fl=1}; Table[Print["#"]; Table[fl=1; Print[{r, m}]; Do[s=Mod[n-EulerPhi[n], m]; If[(s==r)&&(fl==1), Print[n]; fl=0], {n, 1, 500}], {r, 0, m-1}], {m, 1, 50}]

Formula

Min{x; Mod[x-Phi[x], n]=r}, r=1..n, n=1, ...

Extensions

Name modified to match data by Sean A. Irvine, Jan 22 2025
Showing 1-6 of 6 results.