cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A007368 Smallest k such that sigma(x) = k has exactly n solutions.

Original entry on oeis.org

2, 1, 12, 24, 96, 72, 168, 240, 336, 360, 504, 576, 1512, 1080, 1008, 720, 2304, 3600, 5376, 2520, 2160, 1440, 10416, 13392, 3360, 4032, 3024, 7056, 6720, 2880, 6480, 10800, 13104, 5040, 6048, 4320, 13440, 5760, 18720, 20736, 19152, 22680, 43680
Offset: 0

Views

Author

Keywords

Comments

It's not obvious that a(n) exists for all n; I'd like to see a proof. - David Wasserman, Jun 07 2002
Note that k-1 is frequently prime. See A115374 for the least prime. For each n, it appears that there are an infinite number of k such that sigma(x)=k has exactly n solutions. - T. D. Noe, Jan 21 2006
According to Sierpiński, H. J. Kanold proved that there is a k such that sigma(x)=k has n or more solutions. Sierpiński states that Erdős proved that if, for some k, sigma(x)=k has exactly n solutions, then there are an infinite number of such k. - T. D. Noe, Oct 18 2006
Index of the first occurrence of n in A054973. - Jaroslav Krizek, Apr 25 2009

Examples

			a(10) = 504; {204, 220, 224, 246, 284, 286, 334, 415, 451, 503} is the set of x such that sigma(x) = 504.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A115374 (least prime p such that sigma(x)=sigma(p) has exactly n solutions).
Cf. A007369, A007370, A007371, A007372 (n such that sigma(x)=k has 0, 1, 2 and 3 solutions).
Cf. A184393, A184394, A201915 (smallest solution, largest solution, triangle of solutions for sigma(x)=a(n)).

Programs

  • Mathematica
    Needs["Statistics`DataManipulation`"]; s=DivisorSigma[1, Range[10^5]]; f=Frequencies[s]; fs=Sort[f]; tfs=Transpose[fs][[1]]; utfs=Union[tfs]; firstMissing=First[Complement[Range[Last[utfs]], utfs]]; pos=1; Table[While[tfs[[pos]]T. D. Noe *)
    terms = 100; cnt = DivisorSigma[1, Range[terms^3]] // Tally // Sort; a[0] = 2; a[n_] := SelectFirst[cnt, #[[2]] == n&][[1]]; Table[a[n], {n, 0, terms - 1}] (* Jean-François Alcover, Jul 18 2017 *)

Extensions

More terms from David W. Wilson

A007370 Numbers k such that sigma(x) = k has a unique solution.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 13, 14, 15, 20, 28, 30, 36, 38, 39, 40, 44, 57, 62, 63, 68, 74, 78, 91, 93, 102, 110, 112, 121, 127, 133, 138, 150, 158, 160, 162, 164, 171, 174, 176, 183, 194, 195, 198, 200, 204, 212, 217, 222, 230, 242, 255, 256, 258, 260, 266, 278, 282
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Wacław Sierpiński, Elementary Theory of Numbers, Państ. Wydaw. Nauk., Warsaw, 1964, p. 165.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), this sequence (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {250} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 251, a[ [ s ] ]++ ], {n, 1, 250} ]; Select[ Range[ 250 ], a[ [ # ] ] == 1 & ]
  • PARI
    list(lim)=my(v=vectorsmall(lim\1), u=List(), s); for(k=1,#v,s=sigma(k); if(s<=#v, v[s]++)); for(k=1,#v,if(v[k]==1, listput(u,k))); Vec(u) \\ Charles R Greathouse IV, Jun 15 2015
    
  • PARI
    is(k) = invsigmaNum(k) == 1 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A007371 Numbers k such that sigma(x) = k has exactly 2 solutions.

Original entry on oeis.org

12, 18, 31, 32, 54, 56, 80, 98, 104, 108, 114, 124, 126, 128, 132, 140, 152, 156, 182, 186, 210, 264, 272, 280, 308, 320, 342, 378, 390, 392, 399, 403, 408, 416, 440, 444, 448, 492, 522, 532, 570, 572, 594, 608, 630, 632, 726, 762, 770, 774, 780, 784, 800
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), this sequence (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {750} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 751, a[ [ s ] ]++ ], {n, 1, 750} ]; Select[ Range[ 750 ], a[ [ # ] ] == 2 & ]
  • PARI
    is(n)=sum(k=1,n,sigma(k)==n)==2 \\ Charles R Greathouse IV, Mar 09 2014
    
  • PARI
    is(k) = invsigmaNum(k) == 2 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060660 Numbers k such that sigma(x) = k has exactly 4 solutions.

Original entry on oeis.org

96, 120, 180, 312, 372, 420, 434, 456, 540, 546, 560, 624, 702, 728, 798, 816, 930, 1064, 1120, 1170, 1404, 1632, 1638, 1674, 1710, 1776, 1792, 1944, 2100, 2240, 2544, 2560, 2664, 2760, 2800, 2844, 2856, 2940, 2952, 3000, 3040, 3048, 3060, 3080, 3096
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			96 = sigma(42) = sigma(62) = sigma(69) = sigma(77).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), this sequence (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {5000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 5001, a[ [ s ] ]++ ], {n, 1, 5000} ]; Select[ Range[ 5000 ], a[ [ # ] ] == 4 & ]
  • PARI
    is(k) = invsigmaNum(k) == 4 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060661 Numbers k such that sigma(x) = k has exactly 5 solutions.

Original entry on oeis.org

72, 144, 192, 216, 588, 600, 648, 792, 936, 992, 1056, 1224, 1302, 1320, 1560, 1736, 1980, 2040, 2088, 2112, 2268, 2448, 2730, 2790, 2912, 3038, 3136, 3312, 3472, 3520, 3534, 3552, 3672, 3792, 3816, 3936, 4056, 4092, 4340, 4440, 4864, 4872, 4920, 4960
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			72 = sigma(30) = sigma(46) = sigma(51) = sigma(55) = sigma(71).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), this sequence (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {5000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 5001, a[ [ s ] ]++ ], {n, 1, 5000} ]; Select[ Range[ 5000 ], a[ [ # ] ] == 5 & ]
    With[{upto=5000},Select[Union[Transpose[Select[Tally[DivisorSigma[ 1, Range[ upto]]],#[[2]]==5&]][[1]]],#<=upto&]] (* Harvey P. Dale, Jan 27 2015 *)
  • PARI
    is(k) = invsigmaNum(k) == 5 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A060662 Numbers k such that sigma(x) = k has exactly 6 solutions.

Original entry on oeis.org

168, 252, 288, 384, 768, 1248, 1584, 1860, 2052, 2480, 2904, 3906, 3968, 4116, 4176, 4224, 4256, 4284, 4392, 4416, 4620, 5824, 5850, 5856, 5928, 6084, 6192, 6216, 6600, 6636, 6660, 6888, 6944, 7104, 7182, 7308, 7840, 7992, 8184, 8976, 9114, 9480, 9856
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			168 = sigma(60) = sigma(78) = sigma(92) = sigma(123) = sigma(143) = sigma(167).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), this sequence (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Maple
    N:= 10^4: # for terms <= N
    V:= Vector(N):
    for n from 1 to N-1 do
     s:= numtheory:-sigma(n);
     if s <= N then V[s]:= V[s]+1 fi
    od:
    select(t -> V[t]=6, [$1..N]); # Robert Israel, Nov 21 2019
  • Mathematica
    a = Table[ 0, {10000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 10001, a[ [ s ] ]++ ], {n, 1, 10000} ]; Select[ Range[ 10000 ], a[ [ # ] ] == 6 & ]
  • PARI
    is(k) = invsigmaNum(k) == 6 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060663 Numbers k such that sigma(x) = k has exactly 7 solutions.

Original entry on oeis.org

240, 684, 744, 912, 1092, 1176, 1200, 1368, 1596, 2340, 2376, 2496, 2700, 3072, 3348, 4212, 5460, 5520, 5586, 5642, 5712, 6000, 6160, 6264, 6804, 6864, 7068, 7254, 7584, 7632, 7728, 8112, 8232, 8370, 8512, 8680, 8712, 8832, 8960, 9744, 9936
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			240 = sigma(114) = sigma(135) = sigma(158) = sigma(177) = sigma(203) = sigma(209) = sigma(239).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), this sequence (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {10000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 10001, a[ [ s ] ]++ ], {n, 1, 10000} ]; Select[ Range[ 10000 ], a[ [ # ] ] == 7 & ]
    With[{upto=10000},Select[Tally[DivisorSigma[1,Range[upto]]],#[[2]]==7 && #[[1]] <= upto&]][[All,1]]//Sort (* Harvey P. Dale, Jun 22 2019 *)
  • PARI
    is(k) = invsigmaNum(k) == 7 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060664 Numbers k such that sigma(x) = k has exactly 8 solutions.

Original entry on oeis.org

336, 432, 672, 756, 840, 1536, 1620, 1764, 1848, 2280, 2394, 2604, 2808, 3264, 4080, 4480, 4860, 5328, 6528, 6624, 7128, 8316, 8568, 8880, 10608, 11040, 11448, 12288, 12420, 12636, 13176, 13200, 13248, 13536, 13860, 14196, 14208, 14448, 14700
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			336 = sigma(132) = sigma(140) = sigma(182) = sigma(188) = sigma(195) = sigma(249) = sigma(287) = sigma(299).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), this sequence (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Maple
    N:= 30000: # to get terms <= N
    V:= Vector(N):
    for k from 1 to N-1 do
      t:= numtheory:-sigma(k);
      if t <= N then V[t]:= V[t]+1 fi
    od:
    select(t -> V[t]=8, [$1..N]); # Robert Israel, Sep 22 2019
  • Mathematica
    a = Table[ 0, {20000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 20001, a[ [ s ] ]++ ], {n, 1, 20000} ]; Select[ Range[ 20000 ], a[ [ # ] ] == 8 & ]
  • PARI
    is(k) = invsigmaNum(k) == 8 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060665 Numbers k such that sigma(x) = k has exactly 9 solutions.

Original entry on oeis.org

360, 480, 1488, 1800, 1824, 2184, 2232, 2640, 3120, 3420, 3696, 3744, 3960, 4200, 5292, 5580, 5808, 6144, 7344, 7980, 8100, 8352, 8448, 8784, 9144, 10164, 10296, 11592, 11664, 11970, 12432, 13968, 14520, 14560, 15504, 15600, 15912, 16224
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Comments

Do we have a(n) ~ c*n where c ~= 700? - David A. Corneth, Sep 23 2019

Examples

			360 = sigma(120) = sigma(174) = sigma(184) = sigma(190) = sigma(267) = sigma(295) = sigma(319) = sigma(323) = sigma(359).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), this sequence (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Maple
    N:= 60000: # to get terms <= N
    V:= Vector(N):
    for k from 1 to N-1 do
      t:= numtheory:-sigma(k);
      if t <= N then V[t]:= V[t]+1 fi
    od:
    select(t -> V[t]=9, [$1..N]); # Robert Israel, Sep 22 2019
  • Mathematica
    a = Table[ 0, {20000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 20001, a[ [ s ] ]++ ], {n, 1, 20000} ]; Select[ Range[ 20000 ], a[ [ # ] ] == 9 & ]
  • PARI
    upto(n) = {my(v = vecsort(vector(n, i, sigma(i))), res = List()); for(i = 2, #v - 9, if(v[i-1] <= n && v[i-1] != v[i] && v[i] == v[i + 8] && v[i] != v[i+9], listput(res, v[i]))); res} \\ David A. Corneth, Sep 23 2019
    
  • PARI
    is(k) = invsigmaNum(k) == 9 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp

A060666 Numbers k such that sigma(x) = k has exactly 10 solutions.

Original entry on oeis.org

504, 864, 960, 1152, 1260, 2400, 3276, 3888, 4992, 6696, 7020, 7644, 8892, 9672, 9984, 11172, 11200, 11376, 11616, 11856, 12936, 13728, 13888, 14136, 14280, 15480, 15876, 15984, 17808, 19488, 21336, 22608, 23688, 24738, 24840, 25080
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			504 = sigma(204) = sigma(220) = sigma(224) = sigma(246) = sigma(284) = sigma(286) = sigma(334) = sigma(415) = sigma(451) = sigma(504).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), this sequence (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {30000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 30001, a[ [ s ] ]++ ], {n, 1, 30000} ]; Select[ Range[ 30000 ], a[ [ # ] ] == 10 & ]
  • PARI
    is(k) = invsigmaNum(k) == 10 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp
Showing 1-10 of 13 results. Next