cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A383889 Record high points in A083533.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 16, 18, 20, 22, 24, 26, 28, 32, 36, 40, 44, 50, 60, 64, 72, 74, 76, 78, 80, 90, 96, 108, 112
Offset: 1

Views

Author

Jud McCranie, May 13 2025

Keywords

Comments

Values of A083533(k) such that A083533(k) > A083533(i) for any iA002202(j+1) - A002202(j) > A002202(i+1) - A002202(i) for all iA383890 has the corresponding index of A083533.

Crossrefs

A002202 Values taken by totient function phi(m) (A000010).

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168, 172, 176
Offset: 1

Views

Author

Keywords

Comments

These are the numbers n such that for some m the multiplicative group mod m has order n.
Maier & Pomerance show that there are about x * exp(c (log log log x)^2)/log x members of this sequence up to x, with c = 0.81781465... (A234614); see the paper for details on making this precise. - Charles R Greathouse IV, Dec 28 2013
A264739(a(n)) = 1; a(n) occurs A058277(n) times in A007614. - Reinhard Zumkeller, Nov 26 2015
There are no odd numbers > 2 in the sequence and the even numbers that are not in the sequence are in A005277. - Bernard Schott, May 13 2020

References

  • J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002110, A005277, A007614, A007617 (complement).
Cf. A083533 (first differences), A264739.
Cf. A006093 (a subsequence).

Programs

  • Haskell
    import Data.List.Ordered (insertSet)
    a002202 n = a002202_list !! (n-1)
    a002202_list = f [1..] (tail a002110_list) [] where
       f (x:xs) ps'@(p:ps) us
         | x < p = f xs ps' $ insertSet (a000010' x) us
         | otherwise = vs ++ f xs ps ws
         where (vs, ws) = span (<= a000010' x) us
    -- Reinhard Zumkeller, Nov 22 2015
  • Maple
    with(numtheory); t1 := [seq(nops(invphi(n)), n=1..300)]; t2 := []: for n from 1 to 300 do if t1[n] <> 0 then t2 := [op(t2), n]; fi; od: t2;
    # second Maple program:
    q:= n-> is(numtheory[invphi](n)<>[]):
    select(q, [$1..176])[];  # Alois P. Heinz, Nov 13 2024
  • Mathematica
    phiQ[m_] := Select[Range[m+1, 2m*Product[(1-1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1 ] != {}; Select[Range[176], phiQ] (* Jean-François Alcover, May 23 2011, after Maxim Rytin *)
  • PARI
    lst(lim)=my(P=1,q,v);forprime(p=2,default(primelimit), if(eulerphi(P*=p)>=lim,q=p;break));v=vecsort(vector(P/q*lim\eulerphi(P/q),k,eulerphi(k)),,8);select(n->n<=lim,v) \\ Charles R Greathouse IV, Apr 16 2012
    
  • PARI
    select(istotient,vector(100,i,i)) \\ Charles R Greathouse IV, Dec 28 2012
    

A063742 Cototients: numbers k such that x - phi(x) = k has at least one solution.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Labos Elemer, Aug 13 2001, corrected May 20 2003

Keywords

Comments

Numbers in range of A051953, the cototients. Complement of non-cototients, A005278 with respect to natural numbers A000027.

Examples

			First missing numbers are: 10,26,34,50,52,... These missing values are collected in A005278.
		

Crossrefs

Programs

  • Mathematica
    Union[Table[w-EulerPhi[w], {w, 1, A}]] (* taken for sufficiently large A. *)

Extensions

Edited by N. J. A. Sloane, Nov 17 2008 at the suggestion of R. J. Mathar

A083531 First difference sequence of A002191. Differences between possible values for sum of divisors of n.

Original entry on oeis.org

2, 1, 2, 1, 1, 4, 1, 1, 1, 3, 2, 4, 4, 2, 1, 1, 4, 2, 1, 1, 2, 2, 4, 6, 2, 1, 3, 2, 1, 5, 4, 2, 4, 2, 4, 6, 1, 2, 3, 2, 4, 2, 4, 2, 2, 2, 6, 1, 3, 2, 1, 1, 4, 1, 5, 2, 4, 6, 2, 4, 2, 2, 2, 2, 4, 3, 3, 2, 4, 2, 1, 3, 6, 2, 1, 3, 2, 4, 6, 2, 4, 1, 5, 2, 4, 2, 4, 6, 2, 6, 4, 3, 1, 2, 2, 4, 2, 4, 2, 6, 2, 2, 2, 4, 6
Offset: 1

Views

Author

Labos Elemer, May 20 2003

Keywords

Examples

			8 and 12 are the 6th and 7th possible values for sigma(x), since they are sum of divisors of x = 7 and x = 11 respectively, while 9, 10, 11 are impossible ones so 12 - 8 = 4 = a(6) = A002191(7) - A002191(6).
From _Michael De Vlieger_, Jul 22 2017: (Start)
First position of values:
Value   First position
    1         2
    2         1
    3        10
    4         6
    5        30
    6        24
    7       277
    8       165
    9       509
   10       150
   11       824
   12       400
   13     10970
   14      1400
   15     10448
   16      1182
   17     18731
   18      2218
   19    209237
   20      3420
   21    127385
   22      6910
   23     28899
   24      5377
(End)
		

Crossrefs

Cf. A002191, A007609, A007369, A083532, A083533, A083534, A083535, A083536, A109323 (start of record gaps in A002191).

Programs

  • Mathematica
    t=Table[DivisorSigma[1, w], {w, 1, 25000}]; u=Union[%]; Delete[u-RotateRight[u], 1]
    (* Second program: *)
    With[{nn = 300}, Differences@ TakeWhile[Union@ DivisorSigma[1, Range@ nn], # < nn &]] (* Michael De Vlieger, Jul 22 2017 *)

A083534 First difference sequence of A007617. Difference between consecutive values not being in the range of phi (A000010).

Original entry on oeis.org

2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, May 20 2003

Keywords

Comments

a(n) is either 2 or 1 since odd numbers are in A007619.
If a(n) = 1 then A007619(n+1) is an even number not in the range of phi.

Examples

			{11,13,14,15,17} are not in the range of phi and the corresponding differences are {2,1,1,2}.
		

Crossrefs

Programs

  • Haskell
    a083534 n = a083534_list !! (n-1)
    a083534_list = zipWith (-) (tail a007617_list) a007617_list
    -- Reinhard Zumkeller, Nov 26 2015
    
  • Mathematica
    t0[x_] := Table[j, {j, 1, x}]; t=Table[EulerPhi[w], {w, 1, 10000}]; u=Union[%]; c=Complement[t0[10000], u]; Delete[c-RotateRight[c], 1]
  • PARI
    list(lim) = {my(k1 = 3, k2 = 3); while(k1 < lim, until(!istotient(k2), k2++); print1(k2 - k1, ", "); k1 = k2); } \\ Amiram Eldar, Feb 22 2025

Formula

a(n) = A007617(n+1) - A007617(n).

A333019 Numbers k such that both k and k + 2 are totient numbers (A002202).

Original entry on oeis.org

2, 4, 6, 8, 10, 16, 18, 20, 22, 28, 30, 40, 42, 44, 46, 52, 54, 56, 58, 64, 70, 78, 80, 82, 100, 102, 104, 106, 108, 110, 126, 128, 130, 136, 138, 148, 160, 162, 164, 166, 176, 178, 190, 196, 198, 208, 210, 220, 222, 224, 226, 238, 250, 260, 262, 268, 270, 280
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2020

Keywords

Examples

			2 is a term since both 2 and 4 are totient numbers.
		

Crossrefs

Programs

  • PARI
    for(k = 1, 150, if(istotient(2*k) && istotient(2*k+2), print1(2*k,", ")))

A333020 Starts of runs of 3 consecutive even numbers that are all totient numbers (A002202).

Original entry on oeis.org

2, 4, 6, 8, 16, 18, 20, 28, 40, 42, 44, 52, 54, 56, 78, 80, 100, 102, 104, 106, 108, 126, 128, 136, 160, 162, 164, 176, 196, 208, 220, 222, 224, 260, 268, 292, 328, 342, 344, 356, 378, 380, 416, 438, 440, 460, 462, 464, 476, 498, 500, 502, 504, 520, 560, 584
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2020

Keywords

Examples

			2 is a term since 2, 4 and 6 are all totient numbers.
		

Crossrefs

Programs

  • PARI
    m = 3; v = vector(m); for(k=1, m, v[k] = istotient(2*k)); for(k = m+1, 300, if(Set(v) == [1], print1(2*(k-m),", ")); v = concat(v[2..m], istotient(2*k)))

A333021 Starts of runs of 4 consecutive even numbers that are all totient numbers (A002202).

Original entry on oeis.org

2, 4, 6, 16, 18, 40, 42, 52, 54, 78, 100, 102, 104, 106, 126, 160, 162, 220, 222, 342, 378, 438, 460, 462, 498, 500, 502, 856, 858, 880, 882, 1086, 1276, 1278, 1300, 1422, 1480, 1482, 1566, 1660, 1662, 1804, 1806, 1996, 2058, 2200, 2202, 2236, 2238, 3016, 3018
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2020

Keywords

Examples

			2 is a term since 2, 4, 6 and 8 are all totient numbers.
		

Crossrefs

Programs

  • PARI
    m = 4; v = vector(m); for(k=1, m, v[k] = istotient(2*k)); for(k = m+1, 1500, if(Set(v) == [1], print1(2*(k-m),", ")); v = concat(v[2..m], istotient(2*k)))

A333022 Starts of runs of 5 consecutive even numbers that are all totient numbers (A002202).

Original entry on oeis.org

2, 4, 16, 40, 52, 100, 102, 104, 160, 220, 460, 498, 500, 856, 880, 1276, 1480, 1660, 1804, 2200, 2236, 3016, 3160, 3460, 4516, 4780, 5500, 5920, 6040, 6196, 6820, 7240, 7636, 7696, 7720, 8536, 8620, 9196, 9460, 9880, 10456, 12916, 13756, 13960, 14416, 15640
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2020

Keywords

Examples

			2 is a term since 2, 4, 6, 8 and 10 are all totient numbers.
		

Crossrefs

Programs

  • PARI
    m = 5; v = vector(m); for(k=1, m, v[k] = istotient(2*k)); for(k = m+1, 7500, if(Set(v) == [1], print1(2*(k-m),", ")); v = concat(v[2..m], istotient(2*k)))

A333023 Starts of runs of 6 consecutive even numbers that are all totient numbers (A002202).

Original entry on oeis.org

2, 100, 102, 498, 267670, 26734060, 26734062, 31253680, 65974998, 70938496, 118428800, 1232747200, 2764919296, 3149734998, 3149735000, 3413655896, 3415058276, 3755544796, 4446555802, 5727840798, 6156991616, 10080661998, 10464983096, 11054945296, 11953158220
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2020

Keywords

Examples

			2 is a term since 2, 4, 6, 8, 10 and 12 are all totient numbers.
		

Crossrefs

Programs

  • PARI
    m = 6; v = vector(m); for(k=1, m, v[k] = istotient(2*k)); for(k = m+1, 1.5e5, if(Set(v) == [1], print1(2*(k-m),", ")); v = concat(v[2..m], istotient(2*k)))
Showing 1-10 of 13 results. Next