A383889 Record high points in A083533.
1, 2, 4, 6, 10, 12, 16, 18, 20, 22, 24, 26, 28, 32, 36, 40, 44, 50, 60, 64, 72, 74, 76, 78, 80, 90, 96, 108, 112
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
import Data.List.Ordered (insertSet) a002202 n = a002202_list !! (n-1) a002202_list = f [1..] (tail a002110_list) [] where f (x:xs) ps'@(p:ps) us | x < p = f xs ps' $ insertSet (a000010' x) us | otherwise = vs ++ f xs ps ws where (vs, ws) = span (<= a000010' x) us -- Reinhard Zumkeller, Nov 22 2015
with(numtheory); t1 := [seq(nops(invphi(n)), n=1..300)]; t2 := []: for n from 1 to 300 do if t1[n] <> 0 then t2 := [op(t2), n]; fi; od: t2; # second Maple program: q:= n-> is(numtheory[invphi](n)<>[]): select(q, [$1..176])[]; # Alois P. Heinz, Nov 13 2024
phiQ[m_] := Select[Range[m+1, 2m*Product[(1-1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1 ] != {}; Select[Range[176], phiQ] (* Jean-François Alcover, May 23 2011, after Maxim Rytin *)
lst(lim)=my(P=1,q,v);forprime(p=2,default(primelimit), if(eulerphi(P*=p)>=lim,q=p;break));v=vecsort(vector(P/q*lim\eulerphi(P/q),k,eulerphi(k)),,8);select(n->n<=lim,v) \\ Charles R Greathouse IV, Apr 16 2012
select(istotient,vector(100,i,i)) \\ Charles R Greathouse IV, Dec 28 2012
First missing numbers are: 10,26,34,50,52,... These missing values are collected in A005278.
Union[Table[w-EulerPhi[w], {w, 1, A}]] (* taken for sufficiently large A. *)
8 and 12 are the 6th and 7th possible values for sigma(x), since they are sum of divisors of x = 7 and x = 11 respectively, while 9, 10, 11 are impossible ones so 12 - 8 = 4 = a(6) = A002191(7) - A002191(6). From _Michael De Vlieger_, Jul 22 2017: (Start) First position of values: Value First position 1 2 2 1 3 10 4 6 5 30 6 24 7 277 8 165 9 509 10 150 11 824 12 400 13 10970 14 1400 15 10448 16 1182 17 18731 18 2218 19 209237 20 3420 21 127385 22 6910 23 28899 24 5377 (End)
t=Table[DivisorSigma[1, w], {w, 1, 25000}]; u=Union[%]; Delete[u-RotateRight[u], 1] (* Second program: *) With[{nn = 300}, Differences@ TakeWhile[Union@ DivisorSigma[1, Range@ nn], # < nn &]] (* Michael De Vlieger, Jul 22 2017 *)
{11,13,14,15,17} are not in the range of phi and the corresponding differences are {2,1,1,2}.
a083534 n = a083534_list !! (n-1) a083534_list = zipWith (-) (tail a007617_list) a007617_list -- Reinhard Zumkeller, Nov 26 2015
t0[x_] := Table[j, {j, 1, x}]; t=Table[EulerPhi[w], {w, 1, 10000}]; u=Union[%]; c=Complement[t0[10000], u]; Delete[c-RotateRight[c], 1]
list(lim) = {my(k1 = 3, k2 = 3); while(k1 < lim, until(!istotient(k2), k2++); print1(k2 - k1, ", "); k1 = k2); } \\ Amiram Eldar, Feb 22 2025
2 is a term since both 2 and 4 are totient numbers.
for(k = 1, 150, if(istotient(2*k) && istotient(2*k+2), print1(2*k,", ")))
2 is a term since 2, 4 and 6 are all totient numbers.
m = 3; v = vector(m); for(k=1, m, v[k] = istotient(2*k)); for(k = m+1, 300, if(Set(v) == [1], print1(2*(k-m),", ")); v = concat(v[2..m], istotient(2*k)))
2 is a term since 2, 4, 6 and 8 are all totient numbers.
m = 4; v = vector(m); for(k=1, m, v[k] = istotient(2*k)); for(k = m+1, 1500, if(Set(v) == [1], print1(2*(k-m),", ")); v = concat(v[2..m], istotient(2*k)))
2 is a term since 2, 4, 6, 8 and 10 are all totient numbers.
m = 5; v = vector(m); for(k=1, m, v[k] = istotient(2*k)); for(k = m+1, 7500, if(Set(v) == [1], print1(2*(k-m),", ")); v = concat(v[2..m], istotient(2*k)))
2 is a term since 2, 4, 6, 8, 10 and 12 are all totient numbers.
m = 6; v = vector(m); for(k=1, m, v[k] = istotient(2*k)); for(k = m+1, 1.5e5, if(Set(v) == [1], print1(2*(k-m),", ")); v = concat(v[2..m], istotient(2*k)))
Comments