cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A225420 a(n) is the least number k such that the sum of the n Moebius function values beginning at k reaches the maximum value A083544(n).

Original entry on oeis.org

1, 14, 33, 32, 91, 141, 213, 212, 213, 3090, 3093, 3090, 3090, 3090, 38405, 38404, 3090, 3090, 38401, 38400, 294581, 294581, 39569681, 5571498, 68780189, 294577, 68780189, 53758490, 92636277, 456742389, 1176172581, 880346227, 3953000577, 13821836609, 948481781, 948481780, 948481781, 5332819926, 35398246981, 35398246979
Offset: 1

Views

Author

T. D. Noe, May 07 2013

Keywords

Examples

			For n = 2, the 14 sums are 0, -2, -1, -1, 0, 0, -1, 0, 1, 0, -1, -1, 0, 2.
		

Crossrefs

Cf. A008683 (Moebius function), A083544 (maximum values of sums).

Programs

  • Mathematica
    mu = Table[MoebiusMu[i], {i, 1000000}]; t = Table[s = Total /@ Partition[mu, n, 1]; mx = Max[s]; pos = Position[s, mx, 1, 1][[1, 1]]; {mx, pos}, {n, 22}]; Transpose[t][[2]]

Extensions

a(23)-a(24) added by T. D. Noe, May 08 2013
More terms from Don Reble, Apr 21 2021

A343172 Least number k such that the sum of the n Moebius function values beginning at k reaches the minimum value -A083544(n).

Original entry on oeis.org

2, 2, 29, 2, 101, 281, 429, 428, 2081, 6298, 30089, 30088, 143491, 567354, 693677, 693676, 8229, 693674, 1432677, 1123291, 1432677, 2156853, 25085909, 2156851, 25085909, 2156849, 24771577, 24771576, 126398226, 126398226, 3349160985, 389565283, 2928714078, 10441021690, 1353696733
Offset: 1

Views

Author

Don Reble, Apr 21 2021

Keywords

Crossrefs

A083549 Quotient if least common multiple (lcm) of cototient values of consecutive integers is divided by the greatest common divisor (gcd) of the same pair of consecutive numbers.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 12, 2, 6, 8, 8, 8, 56, 56, 8, 12, 12, 12, 12, 12, 12, 16, 80, 70, 126, 144, 16, 22, 22, 16, 208, 234, 198, 264, 24, 20, 12, 40, 24, 30, 30, 24, 56, 56, 24, 32, 224, 210, 570, 532, 28, 36, 60, 480, 672, 70, 30, 44, 44, 32, 864, 864, 544, 782, 46, 36, 900
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Examples

			n=33: cototient(33) = 33-20 = 13, cototient(34) = 34-16 = 18;
lcm(13,18) = 234, gcd(13,18) = 1, so a(34) = 234.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := x-EulerPhi[x]; Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 69}]
    (* Second program: *)
    Map[Apply[LCM, #]/Apply[GCD, #] &@ Map[# - EulerPhi@ # &, #] &, Partition[Range[69], 2, 1]] (* Michael De Vlieger, Mar 17 2018 *)

Formula

a(n) = lcm(A051953(n), A051952(n+1))/gcd(A051953(n), A051952(n+1)) = lcm(cototient(n+1), cototient(n))/A049586(n).
Showing 1-3 of 3 results.