A083563 Number of binary rooted trees (every node has out-degree 0 or 2) with n labeled leaves (2n-1 nodes in all) and at most 2 distinct labels. Also the number of expressions in at most two variables constructible with n-1 instances of a single commutative and nonassociative binary operator.
0, 2, 3, 6, 18, 54, 183, 636, 2316, 8610, 32763, 126582, 495981, 1964718, 7857939, 31682202, 128644290, 525573252, 2158930398, 8911295286, 36942107373, 153742174722, 642088530453, 2690224616904, 11304554951127, 47630390054802, 201181338802308, 851690762495448
Offset: 0
Examples
a(3)=6, enumerating the 6 expressions with 2 # operators: x#(x#x), x#(x#y), x#(y#y), y#(x#x), y#(x#y), y#(y#y). G.f. = 2*x + 3*x^2 + 6*x^3 + 18*x^4 + 54*x^5 + 183*x^6 + 636*x^7 + ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012. - From _N. J. A. Sloane_, Dec 22 2012
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 2*n, `if`(n::odd, 0, (t-> t*(1-t)/2)(a(n/2)))+add(a(i)*a(n-i), i=1..n/2)) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 23 2018
-
Mathematica
a[n_] := a[n] = If[n < 2, 2*n, If[OddQ[n], 0, #*(1 - #)/2&[a[n/2]]]] + Sum[a[i]*a[n - i], {i, 1, n/2}]; a /@ Range[0, 30] (* Jean-François Alcover, Sep 07 2019, after Alois P. Heinz *)
-
PARI
{a(n) = local(A, m); if( n<0, 0, m=1; A = O(x); while( m<=n, m*=2; A = 1 - sqrt(1 - 4*x - subst(A, x, x^2))); polcoeff(A, n))};
Formula
G.f. A(x) = 1 - sqrt(1 - 4*x - A(x^2)) satisfies 0 = A(x)^2 - 2*A(x) + 4*x + A(x^2), A(0)=0. - Michael Somos, Sep 06 2003
G.f.: A(x) = 2x + (1/2)*(A(x)^2 + A(x^2)).
a(0)=0, a(1)=2, a(2*n-1) = a(1)*a(2*n-2) + a(2)*a(2*n-3) + ... + a(n-1)*a(n), a(2*n) = a(1)*a(2*n-1) + a(2)*a(2*n-2) + ... + a(n-1)*a(n+1) + a(n)*(a(n) + 1) / 2.
Comments