cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A319539 Array read by antidiagonals: T(n,k) is the number of binary rooted trees with n leaves of k colors and all non-leaf nodes having out-degree 2.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 6, 2, 5, 10, 18, 18, 3, 6, 15, 40, 75, 54, 6, 7, 21, 75, 215, 333, 183, 11, 8, 28, 126, 495, 1260, 1620, 636, 23, 9, 36, 196, 987, 3600, 8010, 8208, 2316, 46, 10, 45, 288, 1778, 8568, 28275, 53240, 43188, 8610, 98, 11, 55, 405, 2970, 17934, 80136, 232500, 366680, 232947, 32763, 207
Offset: 1

Views

Author

Andrew Howroyd, Sep 22 2018

Keywords

Comments

Not all k colors need to be used. The total number of nodes will be 2n-1.
See table 2.1 in the Johnson reference.

Examples

			Array begins:
===========================================================
n\k|  1    2      3       4        5        6         7
---+-------------------------------------------------------
1  |  1    2      3       4        5        6         7 ...
2  |  1    3      6      10       15       21        28 ...
3  |  1    6     18      40       75      126       196 ...
4  |  2   18     75     215      495      987      1778 ...
5  |  3   54    333    1260     3600     8568     17934 ...
6  |  6  183   1620    8010    28275    80136    194628 ...
7  | 11  636   8208   53240   232500   785106   2213036 ...
8  | 23 2316  43188  366680  1979385  7960638  26037431 ...
9  | 46 8610 232947 2590420 17287050 82804806 314260765 ...
...
		

Crossrefs

Columns 1..5 are A001190, A083563, A220816, A220817, A220818.
Main diagonal is A319580.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(A(n/2, k)))+add(A(i, k)*A(n-i, k), i=1..n/2))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Sep 23 2018
  • Mathematica
    A[n_, k_] := A[n, k] = If[n<2, k*n, If[OddQ[n], 0, (#*(1-#)/2&)[A[n/2, k]]] + Sum[A[i, k]*A[n-i, k], {i, 1, n/2}]];
    Table[A[n, d-n+1], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Sep 02 2019, after Alois P. Heinz *)
  • PARI
    \\ here R(n,k) gives k-th column as a vector.
    R(n,k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
    {my(T=Mat(vector(8, k, R(8, k)~))); for(n=1, #T~, print(T[n,]))}

Formula

T(1,k) = k.
T(n,k) = (1/2)*([n mod 2 == 0]*T(n/2,k) + Sum_{j=1..n-1} T(j,k)*T(n-j,k)).
G.f. of k-th column R(x) satisfies R(k) = k*x + (R(x)^2 + R(x^2))/2.

A220826 Number of unrooted binary leaf-multi-labeled trees with n leaves on the label set [2].

Original entry on oeis.org

2, 3, 4, 6, 12, 31, 78, 234, 722, 2376, 8046, 28263, 101226, 370389, 1375728, 5182107, 19743204, 75994993, 295110996, 1155128397, 4553360558, 18063221619, 72069527418, 289053637621, 1164871141254, 4714973350560, 19161577759814, 78162897838290, 319940064689142
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2012

Keywords

Crossrefs

Column 2 of A339649.

Programs

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 14 2020

A347928 Triangle read by rows, T(n, k) are the coefficients of the scaled Mandelbrot-Larsen polynomials P(n, x) = 2^(2*n-1)*M(n, x), where M(n, x) are the Mandelbrot-Larsen polynomials; for 0 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 0, 4, 2, 0, 16, 12, 12, 5, 0, 0, 32, 40, 40, 14, 0, 0, 192, 208, 168, 140, 42, 0, 0, 0, 640, 800, 720, 504, 132, 0, 2048, 1792, 2688, 3920, 3584, 3080, 1848, 429, 0, 0, 4096, 4608, 11520, 17760, 16512, 13104, 6864, 1430
Offset: 0

Views

Author

Peter Luschny, Oct 27 2021

Keywords

Comments

To avoid confusion: the polynomials which are called 'Mandelbrot polynomials' by some authors are listed in A137560. The name 'Mandelbrot-Larsen' polynomials was introduced in Calkin, Chan, & Corless to distinguish them from the Mandelbrot polynomials.

Examples

			Triangle starts:
[0]  0;
[1]  0,    1;
[2]  0,    2,    1;
[3]  0,    0,    4,    2;
[4]  0,   16,   12,   12,     5;
[5]  0,    0,   32,   40,    40,    14;
[6]  0,    0,  192,  208,   168,   140,    42;
[7]  0,    0,    0,  640,   800,   720,   504,   132;
[8]  0, 2048, 1792, 2688,  3920,  3584,  3080,  1848,  429;
[9]  0,    0, 4096, 4608, 11520, 17760, 16512, 13104, 6864, 1430.
		

Crossrefs

Programs

  • Maple
    M := proc(n, x) local k; option remember;
    if n = 0 then 0 elif n = 1 then x else add(M(k, x)*M(n-k, x), k = 1..n-1) +
    ifelse(n::even, M(n/2, x), 0) fi; expand(%/2) end:
    P := n -> 2^(2*n - 1)*M(n, x):
    row := n -> seq(coeff(P(n), x, k), k = 0..n): seq(row(n), n = 0..9);
  • Mathematica
    M[n_, x_] := M[n, x] = Module[{k, w}, w = Which[n == 0, 0, n == 1, x, True, Sum[M[k, x]*M[n-k, x], {k, 1, n-1}] + If[EvenQ[n], M[n/2, x], 0]]; Expand[w/2]];
    P[n_] := 2^(2*n - 1)*M[n, x];
    row [n_] := If[n == 0, {0}, CoefficientList[P[n], x]];
    Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Jul 07 2022, after Maple code *)

Formula

The Mandelbrot-Larsen polynomials are defined: M(0, x) = 0; M(1, x) = x/2;
M(n, x) = (1/2)*(even(n)*M(n/2, x) + Sum_{k=1..n-1} M(k, x)*M(n-k, x)) for n > 1. Here even(n) = 1 if n is even, otherwise 0.
P(n, x) = 2^(2*n-1)*M(n, x) (scaled Mandelbrot-Larsen polynomials).
T(n, k) = [x^k] P(n, x).
[x^k] M(n,k) = A348679(n, k) / A348678(n, k).
M(n, 2*k) = P(n, 2*k) / 2^(2*n-1) = A319539(n, k).
P(n, k) = A348686(n, k).
T(n, n) = A000108(n-1) for n >= 1, Catalan numbers.
T(n+2, n+1) / 2 = A000984(n) for n >= 0, central binomials.
P(n, 1) = A088674(n-1) for n >= 1, also row sums.
M(n, 2) = A001190(n) for n >= 0.
M(n, 4) = A083563(n) for n >= 0.
M(n,-4) = -A107087(n) for n >= 1.
M(n, 6) = A220816(n) for n >= 1.
M(n, 8) = A220817(n) for n >= 1.
Conjecture (Calkin, Chan, & Corless): content(P(n)) = gcd(row(n)) = A048896(n-1) for n >= 1.

A220819 Number of rooted binary leaf-multilabeled trees with n leaves on the label set [2].

Original entry on oeis.org

0, 1, 4, 14, 48, 171, 614, 2270, 8518, 32567, 126168, 495079, 1962752, 7853581, 31672502, 128622480, 525523990, 2158818376, 8911039462, 36941520279, 153740822408, 642085403709, 2690217364606, 11304538078369, 47630350694248, 201181246749072, 851690546714230
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2012

Keywords

Crossrefs

Column k=2 of A319541.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(b(n/2, k)))+add(b(i, k)*b(n-i, k), i=1..n/2))
        end:
    a:= n-> b(n, 2)-2*b(n, 1):
    seq(a(n), n=1..40);  # Alois P. Heinz, Sep 07 2019
  • Mathematica
    (* b = A083563 *) b[n_] := b[n] = If[n < 2, 2*n, If[OddQ[n], 0, #*(1 - #)/2 &[b[n/2]]]] + Sum[b[i]*b[n - i], {i, 1, n/2}];
    (* c = A001190 *) c[n_?OddQ] := c[n] = Sum[c[k]*c[n - k], {k, 1, (n - 1)/2}]; c[n_?EvenQ] := c[n] = Sum[c[k]*c[n - k], {k, 1, n/2 - 1}] + (1/2)*c[n/2]*(1 + c[n/2]); c[0] = 0; c[1] = 1;
    a[n_] := b[n] - 2 c[n];
    Array[a, 27] (* Jean-François Alcover, Sep 07 2019 *)

Formula

a(n) = A083563(n) - 2*A001190(n). - Andrew Howroyd, Sep 23 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 23 2018
Showing 1-4 of 4 results.