A083658 a(n) = a(n-1) + a(n-2) + gcd(a(n-1), a(n-2)) for n > 1; a(0)=1, a(1)=1.
1, 1, 3, 5, 9, 15, 27, 45, 81, 135, 243, 405, 729, 1215, 2187, 3645, 6561, 10935, 19683, 32805, 59049, 98415, 177147, 295245, 531441, 885735, 1594323, 2657205, 4782969, 7971615, 14348907, 23914845, 43046721, 71744535, 129140163, 215233605, 387420489
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..4191
- Yulu Education, 2022 Shanghai College Entrance Examination Mathematics Paper and Answer Analysis (Examinee Recall Version) (In Chinese)
- Index entries for linear recurrences with constant coefficients, signature (0,3).
Crossrefs
Cf. A003961.
Programs
-
Mathematica
CoefficientList[Series[(-2*x^3 - x - 1)/(3*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
Formula
a(2n) = 3^n, a(2n+1) = 5*3^(n-1) for n>0; a(0)=1, a(1)=1.
G.f.: (2*x^3+1+x)/(1-3*x^2). - R. J. Mathar, Feb 27 2010
a(n) = 3 * a(n-2), n>3, a(2)=3, a(3)=5. - Bill McEachen, Jul 06 2024
Comments