A083662 a(n) = a(floor(n/2)) + a(floor(n/4)), n > 0; a(0)=1.
1, 2, 3, 3, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34
Offset: 0
Keywords
Links
- R. Zumkeller, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A088468.
Programs
-
PARI
a(n)=if(n<1,n==0,a(n\2)+a(n\4))
Formula
For n > 0, a(n) = F([log(n)/log(2)]+3) where F(k) denotes the k-th Fibonacci number. For n >= 3, F(n) appears 2^(n-3) times. More generally, if p is an integer > 1 and a(n) = a(floor(n/p)) + a(floor(n/p^2)), n > 0, a(0)=1, then for n > 0, a(n) = F(floor(log(n)/log(p)) + 3).
Comments