A083711 a(n) = A083710(n) - A000041(n-1).
1, 1, 1, 2, 1, 4, 1, 5, 3, 7, 1, 14, 1, 13, 8, 20, 1, 33, 1, 40, 14, 44, 1, 85, 6, 79, 25, 117, 1, 181, 1, 196, 45, 233, 17, 389, 1, 387, 80, 545, 1, 750, 1, 839, 165, 1004, 1, 1516, 12, 1612, 234, 2040, 1, 2766, 48, 3142, 388, 3720, 1, 5295, 1, 5606, 663, 7038, 83, 9194, 1, 10379, 1005
Offset: 1
Examples
From _Gus Wiseman_, Apr 18 2021: (Start) The a(6) = 4 through a(12) = 13 partitions: (6) (7) (8) (9) (10) (11) (12) (3,3) (4,4) (6,3) (5,5) (6,6) (4,2) (6,2) (3,3,3) (8,2) (8,4) (2,2,2) (4,2,2) (4,4,2) (9,3) (2,2,2,2) (6,2,2) (10,2) (4,2,2,2) (4,4,4) (2,2,2,2,2) (6,3,3) (6,4,2) (8,2,2) (3,3,3,3) (4,4,2,2) (6,2,2,2) (4,2,2,2,2) (2,2,2,2,2,2) (End)
References
- L. M. Chawla, M. O. Levan and J. E. Maxfield, On a restricted partition function and its tables, J. Natur. Sci. and Math., 12 (1972), 95-101.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Allowing 1's gives A083710.
The strict case is A098965.
The complement (except also without 1's) is counted by A338470.
The dual version is A339619.
A000005 counts divisors.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.
Programs
-
Maple
with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l)-1 do c := c+numbpart(l[i]-1) od: RETURN(c): end: for j from 2 to 100 do printf(`%d,`,a(j)) od: # James Sellers, Jun 21 2003 # second Maple program: a:= n-> max(1, add(combinat[numbpart](d-1), d=numtheory[divisors](n) minus {n})): seq(a(n), n=1..69); # Alois P. Heinz, Feb 15 2023
-
Mathematica
a[n_] := If[n==1, 1, Sum[PartitionsP[d-1], {d, Most@Divisors[n]}]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 15 2023 *)
Formula
a(n) = Sum_{ d|n, dA000041(d-1).
Extensions
More terms from James Sellers, Jun 21 2003
Comments