A083751 Number of partitions of n into >= 2 parts and with minimum part >= 2.
0, 0, 0, 1, 1, 3, 3, 6, 7, 11, 13, 20, 23, 33, 40, 54, 65, 87, 104, 136, 164, 209, 252, 319, 382, 477, 573, 707, 846, 1038, 1237, 1506, 1793, 2166, 2572, 3093, 3659, 4377, 5169, 6152, 7244, 8590, 10086, 11913, 13958, 16423, 19195, 22518, 26251, 30700, 35716
Offset: 1
Keywords
Examples
a(6) = 3, as 6 = 2+4 = 3+3 = 2+2+2. a(6) = 3 because 6 = 2+4 = 3+3 = 2+2+2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Robert Schneider, Nuclear partitions and a formula for p(n), arXiv:1912.00575 [math.NT], 2019.
Crossrefs
Programs
-
Maple
g:=sum(x^(2*j)/product(1-x^i,i=1..j),j=2..50): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..51); # Emeric Deutsch, Mar 29 2006
-
Mathematica
Drop[CoefficientList[Series[1/Product[(1-x^k)^1, {k, 2, 50}], {x, 0, 50}], x]-1, 2] (* or *) Table[Count[IntegerPartitions[n], q_List /; Length[q] > 1 && Min[q] >= 2 ], {n, 24}]
Formula
G.f.: Sum_{j>=2} x^(2j)/Product_{i=1..j} (1-x^i). - Emeric Deutsch, Mar 29 2006
a(n) = A002865(n) - 1, n > 1. - Omar E. Pol, Oct 21 2011
a(n) = A187219(n) - 1. - Omar E. Pol, Mar 04 2012
Extensions
More terms from Vladeta Jovovic and Wouter Meeussen, Jun 18 2003
Description corrected by James Sellers, Jun 21 2003
Comments