A187219
Number of partitions of n that do not contain parts less than the smallest part of the partitions of n-1.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137, 165, 210, 253, 320, 383, 478, 574, 708, 847, 1039, 1238, 1507, 1794, 2167, 2573, 3094, 3660, 4378, 5170, 6153, 7245, 8591, 10087, 11914, 13959, 16424, 19196, 22519, 26252, 30701, 35717
Offset: 1
From _Omar E. Pol_, Aug 13 2013: (Start)
Illustration of initial terms as number of regions:
. _ _ _ _ _ _
. |_ _ _ |
. |_ _ _|_ |
. |_ _ | |
. _ _ _ _ _ |_ _|_ _|_ |
. |_ _ _ | | |
. _ _ _ _ |_ _ _|_ | | |
. |_ _ | | | | |
. _ _ _ |_ _|_ | | | | |
. _ _ |_ _ | | | | | | |
. _ |_ | | | | | | | | |
. |_| |_| |_| |_| |_| |_|
.
. 1 1 1 2 2 4
.
(End)
-
Join[{1}, Drop[CoefficientList[Series[1 / Product[(1 - x^k)^1, {k, 2, 50}], {x, 0, 50}], x], 2]] (* Vincenzo Librandi, Feb 15 2018 *)
A187219[nmax_]:=Join[{1},Differences[PartitionsP[Range[nmax]]]];
A187219[100] (* Paolo Xausa, Feb 17 2023 *)
A318029
Expansion of Sum_{k>=2} x^(k*(k+3)/2) / Product_{j=1..k} (1 - x^j).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 9, 11, 14, 16, 20, 24, 28, 34, 40, 47, 55, 65, 75, 88, 102, 118, 136, 158, 180, 208, 238, 272, 311, 355, 403, 459, 521, 590, 668, 756, 852, 962, 1084, 1218, 1370, 1538, 1724, 1932, 2163, 2417, 2701, 3015, 3361, 3745, 4170, 4636, 5154, 5724
Offset: 0
a(9) = 4 because we have [7, 2], [6, 3], [5, 4] and [4, 3, 2].
-
nmax = 60; CoefficientList[Series[Sum[x^(k (k + 3)/2)/Product[(1 - x^j), {j, 1, k}], {k, 2, nmax}], {x, 0, nmax}], x]
nmax = 60; CoefficientList[Series[x - 1/(1 - x) + 1/((1 + x) QPochhammer[x, x^2]), {x, 0, nmax}], x]
Join[{0, 0}, Table[-1 + Sum[(-1)^(n - k) PartitionsQ[k], {k, 0, n}], {n, 2, 60}]]
A379720
Except a(0)=1 and a(4)=0, number of integer partitions of n with no 1's and at least two parts.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 3, 3, 6, 7, 11, 13, 20, 23, 33, 40, 54, 65, 87, 104, 136, 164, 209, 252, 319, 382, 477, 573, 707, 846, 1038, 1237, 1506, 1793, 2166, 2572, 3093, 3659, 4377, 5169, 6152, 7244, 8590, 10086, 11913, 13958, 16423, 19195, 22518, 26251, 30700, 35716
Offset: 0
The a(5) = 1 through a(11) = 13 partitions:
(3,2) (3,3) (4,3) (4,4) (5,4) (5,5) (6,5)
(4,2) (5,2) (5,3) (6,3) (6,4) (7,4)
(2,2,2) (3,2,2) (6,2) (7,2) (7,3) (8,3)
(3,3,2) (3,3,3) (8,2) (9,2)
(4,2,2) (4,3,2) (4,3,3) (4,4,3)
(2,2,2,2) (5,2,2) (4,4,2) (5,3,3)
(3,2,2,2) (5,3,2) (5,4,2)
(6,2,2) (6,3,2)
(3,3,2,2) (7,2,2)
(4,2,2,2) (3,3,3,2)
(2,2,2,2,2) (4,3,2,2)
(5,2,2,2)
(3,2,2,2,2)
For <= instead of < we have
A002865 = partitions into parts > 1.
These partitions have ranks
A071904 (except initial terms).
A379668 counts partitions without 1's by sum and product.
Counting and ranking multisets by comparing sum and product:
Cf.
A003963,
A028422,
A318950,
A319000,
A319916,
A325036,
A325041,
A326152,
A326178,
A379666,
A379678.
A182699
Number of emergent parts in all partitions of n.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 4, 4, 10, 12, 22, 27, 47, 56, 89, 112, 164, 205, 294, 364, 505, 630, 845, 1052, 1393, 1719, 2235, 2762, 3533, 4343, 5506, 6730, 8443, 10296, 12786, 15531, 19161, 23161, 28374, 34201, 41621, 49975, 60513, 72385, 87200, 103999, 124670, 148209
Offset: 0
For n = 6 the partitions of 6 contain four "emergent" parts: (3), (4), (2), (2), so a(6) = 4. See below the location of the emergent parts.
6
(3) + 3
(4) + 2
(2) + (2) + 2
5 + 1
3 + 2 + 1
4 + 1 + 1
2 + 2 + 1 + 1
3 + 1 + 1 + 1
2 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1
For a(10) = 22 see the link for the location of the 22 "emergent parts" (colored yellow and green) and the location of the 42 "filler parts" (colored blue) in the last section of the set of partitions of 10.
-
b:= proc(n, i) option remember; local t, h;
if n<0 then [0, 0, 0]
elif n=0 then [0, 1, 0]
elif i<2 then [0, 0, 0]
else t:= b(n, i-1); h:= b(n-i, i);
[t[1]+h[1]+h[2], t[2], t[3]+h[3]+h[1]]
fi
end:
a:= n-> b(n, n)[3]:
seq (a(n), n=0..50); # Alois P. Heinz, Oct 21 2011
-
b[n_, i_] := b[n, i] = Module[{t, h}, Which[n<0, {0, 0, 0}, n == 0, {0, 1, 0}, i<2 , {0, 0, 0}, True, t = b[n, i-1]; h = b[n-i, i]; Join [t[[1]] + h[[1]] + h[[2]], t[[2]], t[[3]] + h[[3]] + h[[1]] ]]]; a[n_] := b[n, n][[3]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 18 2015, after Alois P. Heinz *)
A182709
Sum of the emergent parts of the partitions of n.
Original entry on oeis.org
0, 0, 0, 2, 3, 11, 14, 33, 45, 81, 109, 185, 237, 372, 490, 715, 928, 1326, 1693, 2348, 2998, 4032, 5119, 6795, 8530, 11132, 13952, 17927, 22314, 28417, 35126, 44279, 54532, 68062, 83422, 103427, 126063, 155207, 188506, 230547, 278788, 339223, 408482
Offset: 1
For n=7 the partitions of 7 that do not contain "1" as a part are
7
4 + 3
5 + 2
3 + 2 + 2
Then remove one copy of the smallest part of every partition. The rest are the emergent parts:
.,
4, .
5, .
3, 2, .
The sum of these parts is 4 + 5 + 3 + 2 = 14, so a(7)=14.
For n=10 the illustration in the link shows the location of the emergent parts (colored yellow and green) and the location of the filler parts (colored blue) in the last section of the set of partitions of 10.
Cf.
A000041,
A135010,
A138121,
A138879,
A138880,
A182699,
A182703,
A182708,
A182740,
A182742,
A182743.
-
b:= proc(n, i) option remember;
if n<0 then 0
elif n=0 then 1
elif i<2 then 0
else b(n, i-1) +b(n-i, i)
fi
end:
c:= proc(n, i, k) option remember;
if n<0 then 0
elif n=0 then k
elif i<2 then 0
else c(n, i-1, k) +c(n-i, i, i)
fi
end:
a:= n-> n*b(n, n) - c(n, n, 0):
seq(a(n), n=1..40); # Alois P. Heinz, Dec 01 2010
-
f[n_]:=Total[Flatten[Most/@Select[IntegerPartitions[n],!MemberQ[#,1]&]]]; Table[f[i],{i,50}] (* Harvey P. Dale, Dec 28 2010 *)
b[n_, i_] := b[n, i] = Which[n<0, 0, n==0, 1, i<2, 0, True, b[n, i-1] + b[n - i, i]]; c[n_, i_, k_] := c[n, i, k] = Which[n<0, 0, n==0, k, i<2, 0, True, c[n, i-1, k] + c[n-i, i, i]]; a[n_] := n*b[n, n] - c[n, n, 0]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Oct 08 2015, after Alois P. Heinz *)
A000094
Number of trees of diameter 4.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 5, 8, 14, 21, 32, 45, 65, 88, 121, 161, 215, 280, 367, 471, 607, 771, 980, 1232, 1551, 1933, 2410, 2983, 3690, 4536, 5574, 6811, 8317, 10110, 12276, 14848, 17941, 21600, 25977, 31146, 37298, 44542, 53132, 63218, 75131, 89089
Offset: 1
From _Gus Wiseman_, Apr 12 2019: (Start)
The a(5) = 1 through a(9) = 14 partitions of n-1 with at least two parts of size 2 or larger, or non-hooks, are the following. The Heinz numbers of these partitions are given by A105441.
(22) (32) (33) (43) (44)
(221) (42) (52) (53)
(222) (322) (62)
(321) (331) (332)
(2211) (421) (422)
(2221) (431)
(3211) (521)
(22111) (2222)
(3221)
(3311)
(4211)
(22211)
(32111)
(221111)
The a(5) = 1 through a(9) = 14 partitions of n-1 whose maximum part minus minimum part is at least 2 are the following. The Heinz numbers of these partitions are given by A307516.
(31) (41) (42) (52) (53)
(311) (51) (61) (62)
(321) (331) (71)
(411) (421) (422)
(3111) (511) (431)
(3211) (521)
(4111) (611)
(31111) (3221)
(3311)
(4211)
(5111)
(32111)
(41111)
(311111)
The a(5) = 1 through a(9) = 14 partitions of n-1 with at least two parts that are smaller than the largest part are the following. The Heinz numbers of these partitions are given by A307517.
(211) (311) (321) (322) (422)
(2111) (411) (421) (431)
(2211) (511) (521)
(3111) (3211) (611)
(21111) (4111) (3221)
(22111) (3311)
(31111) (4211)
(211111) (5111)
(22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(End)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Christian G. Bower, Table of n, a(n) for n = 1..500
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
- J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
- Miloslav Znojil, Perturbation theory near degenerate exceptional points, arXiv:2008.00479 [math-ph], 2020.
- Index entries for sequences related to trees
-
g:=x/product(1-x^j,j=1..70)-x-x^2/(1-x)^2: gser:=series(g,x=0,48): seq(coeff(gser,x,n),n=1..46); # Emeric Deutsch, May 01 2006
A000094 := proc(n)
combinat[numbpart](n-1)-n+1 ;
end proc: # R. J. Mathar, May 17 2016
-
t=Table[PartitionsP[n]-n,{n,0,45}];
ReplacePart[t,0,1]
(* Clark Kimberling, Mar 05 2012 *)
CoefficientList[1/QPochhammer[x]-x/(1-x)^2-1+O[x]^50, x] (* Jean-François Alcover, Feb 04 2016 *)
A212551
Number of partitions T(n,k) of n containing at least one other part m-k if m is the largest part; triangle T(n,k), n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 2, 3, 1, 1, 0, 0, 4, 3, 3, 1, 1, 0, 0, 4, 6, 4, 3, 1, 1, 0, 0, 7, 7, 7, 4, 3, 1, 1, 0, 0, 8, 11, 9, 8, 4, 3, 1, 1, 0, 0, 12, 13, 15, 10, 8, 4, 3, 1, 1, 0, 0, 14, 20, 18, 17, 11, 8, 4, 3, 1, 1, 0, 0
Offset: 0
T(4,0) = 2: [1,1,1,1], [2,2].
T(4,1) = 1: [2,1,1].
T(5,1) = 3: [2,1,1,1], [2,2,1], [3,2].
T(6,2) = 3: [3,1,1,1], [3,2,1], [4,2].
T(7,2) = 4: [3,1,1,1,1], [3,2,1,1], [3,3,1], [4,2,1].
T(8,4) = 3: [5,1,1,1], [5,2,1], [6,2].
Triangle T(n,k) begins:
1;
0, 0;
1, 0, 0;
1, 1, 0, 0;
2, 1, 1, 0, 0;
2, 3, 1, 1, 0, 0;
4, 3, 3, 1, 1, 0, 0;
4, 6, 4, 3, 1, 1, 0, 0;
7, 7, 7, 4, 3, 1, 1, 0, 0;
Columns k=0-10 give:
A002865,
A083751(n+1),
A119907,
A212543,
A212544,
A212545,
A212546,
A212547,
A212548,
A212549,
A212550.
Row sums give
A000070(n-2) for n>1.
-
b:= proc(n, i) option remember;
`if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
end:
T:= (n, k)-> `if`(n=0 and k=0, 1,
add(b(n-2*m-k, min(n-2*m-k, m+k)), m=1..(n-k)/2)):
seq(seq(T(n, k), k=0..n), n=0..14);
-
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i-1] + If[i > n, 0, b[n-i, i]]]; t[n_, k_] := If[n == 0 && k == 0, 1, Sum[b[n-2*m-k, Min[n-2*m-k, m+k]], {m, 1, (n-k)/2}]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
A320179
Regular triangle where T(n,k) is the number of unlabeled series-reduced rooted trees with n leaves in which every leaf is at height k.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 3, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 6, 1, 0, 0, 0, 0, 0, 1, 7, 1, 0, 0, 0, 0, 0, 0, 1, 11, 4, 0, 0, 0, 0, 0, 0, 0, 1, 13, 6, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 23, 23, 0, 0, 0
Offset: 1
Triangle begins:
1
0 1
0 1 0
0 1 1 0
0 1 1 0 0
0 1 3 0 0 0
0 1 3 0 0 0 0
0 1 6 1 0 0 0 0
0 1 7 1 0 0 0 0 0
0 1 11 4 0 0 0 0 0 0
0 1 13 6 0 0 0 0 0 0 0
0 1 20 16 0 0 0 0 0 0 0 0
0 1 23 23 0 0 0 0 0 0 0 0 0
0 1 33 46 0 0 0 0 0 0 0 0 0 0
The T(10,3) = 4 rooted trees:
(((oo)(oo))((oo)(oooo)))
(((oo)(oo))((ooo)(ooo)))
(((oo)(ooo))((oo)(ooo)))
(((oo)(oo))((oo)(oo)(oo)))
-
qurt[n_]:=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[qurt/@ptn]],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}]];
Table[Length[Select[qurt[n],SameQ[##,k]&@@Length/@Position[#,{}]&]],{n,14},{k,0,n-1}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
T(n)={my(u=vector(n), v=vector(n), h=1); u[1]=1; while(u, v+=u*h; h*=x; u=EulerT(u)-u); vector(n, n, Vecrev(v[n], n))}
{ my(A=T(15)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 09 2020
A196025
Total sum of parts greater than 1 in all the partitions of n except one copy of the smallest part greater than 1 of every partition.
Original entry on oeis.org
0, 0, 0, 2, 5, 16, 30, 63, 108, 189, 298, 483, 720, 1092, 1582, 2297, 3225, 4551, 6244, 8592, 11590, 15622, 20741, 27536, 36066, 47198, 61150, 79077, 101391, 129808, 164934, 209213, 263745, 331807, 415229, 518656, 644719, 799926, 988432, 1218979
Offset: 1
Cf.
A026905,
A046746,
A066186,
A135010,
A138121,
A182699,
A182707,
A182709,
A183152,
A193827,
A196039,
A196930,
A196931,
A198381.
A198381
Total number of parts greater than 1 in all partitions of n minus the number of partitions of n into parts each less than n.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 6, 10, 20, 32, 54, 81, 128, 184, 273, 385, 549, 754, 1048, 1412, 1917, 2547, 3392, 4444, 5837, 7556, 9791, 12553, 16086, 20429, 25935, 32665, 41108, 51404, 64190, 79721, 98882, 122043, 150417, 184618, 226239
Offset: 0
Cf.
A000041,
A000065,
A000070,
A006128,
A026905,
A093694,
A096541,
A135010,
A138121,
A182699,
A182707,
A182709,
A183152,
A193827,
A196930,
A196931.
Showing 1-10 of 17 results.
Comments