cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083584 a(n) = (8*4^n - 5)/3.

Original entry on oeis.org

1, 9, 41, 169, 681, 2729, 10921, 43689, 174761, 699049, 2796201, 11184809, 44739241, 178956969, 715827881, 2863311529, 11453246121, 45812984489, 183251937961, 733007751849, 2932031007401, 11728124029609, 46912496118441
Offset: 0

Views

Author

Paul Barry, May 01 2003

Keywords

Comments

a(n) = A007583(n+1) - 2 = A020988(n) - 1 = A039301(n+2) - 3. - Ralf Stephan, Jun 14 2003
Sum of n-th row of triangle of powers of 4: 1; 4 1 4; 16 4 1 4 16; 64 16 4 1 4 16 64; .... - Philippe Deléham, Feb 24 2014

Examples

			a(0) = 1;
a(1) = 4 + 1 + 4 = 9;
a(2) = 16 + 4 + 1 + 4 + 16 = 41;
a(3) = 64 + 16 + 4 + 1 + 4 + 16 + 64 = 169; etc. - _Philippe Deléham_, Feb 24 2014
		

Crossrefs

Cf. A083855.

Programs

Formula

a(n) = (8*4^n - 5)/3.
G.f.: (1+4*x)/((1-x)*(1-4*x)).
E.g.f.: (8*exp(4*x) - exp(x))/3.
a(0)=1, a(1)=9, a(n) = 5*a(n-1) - 4*a(n-2). - Harvey P. Dale, Oct 23 2011
a(n) = 4*a(n-1) + 5, a(0) = 1. - Philippe Deléham, Feb 24 2014
a(n+1) = 2^(2^n+1) + a(n), a(1)=1. - Ben Paul Thurston, Dec 27 2015

A083854 Numbers that are squares, twice squares, three times squares, or six times squares, i.e., numbers whose squarefree part divides 6.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 48, 49, 50, 54, 64, 72, 75, 81, 96, 98, 100, 108, 121, 128, 144, 147, 150, 162, 169, 192, 196, 200, 216, 225, 242, 243, 256, 288, 289, 294, 300, 324, 338, 361, 363, 384, 392, 400, 432, 441, 450, 484, 486, 507
Offset: 0

Views

Author

Henry Bottomley, May 06 2003

Keywords

Comments

It is simple to divide equilateral triangles into these numbers of congruent parts: squares by making smaller equilateral triangles; 6*squares by dividing each small equilateral triangle by its medians into small right triangles; and 2*squares or 3*squares by recombining three or two of these small right triangles.

Crossrefs

Programs

  • Mathematica
    mx = 23; Sort@Select[Flatten@Table[{1, 2, 3, 6} n^2, {n, mx}], # <= mx^2 &] (* Ivan Neretin, Nov 08 2016 *)

Formula

a(n) is bounded below by 0.137918...*n^2 where 0.137918... = 3*(3-2*sqrt(2))*(2-sqrt(3)); the error appears to be O(n).
Sum_{n>=1} 1/a(n) = Pi^2/3 (A195055). - Amiram Eldar, Dec 19 2020
Showing 1-2 of 2 results.