cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A083855 Multiplicands in the list of numbers which are squares, twice squares, three times squares, or six times squares (A083854).

Original entry on oeis.org

1, 2, 3, 1, 6, 2, 1, 3, 1, 2, 6, 1, 3, 2, 1, 3, 1, 2, 6, 1, 2, 3, 1, 6, 2, 1, 3, 1, 2, 1, 3, 6, 2, 1, 3, 1, 2, 6, 1, 2, 3, 1, 2, 1, 6, 3, 1, 2, 1, 3, 6, 2, 1, 3, 1, 2, 1, 6, 3, 2, 1, 1, 2, 3, 6, 1, 2, 3, 1, 2, 6, 1, 3, 1, 2, 1, 6, 3, 2, 1, 1, 2, 3, 6, 1, 2, 3, 1, 2, 1, 6, 3, 1, 2, 1, 3, 6, 2, 1, 1, 3, 2, 1, 6, 2
Offset: 1

Views

Author

Henry Bottomley, May 06 2003

Keywords

Comments

1, 2, 3 and 6 appear in the ratios sqrt(6):sqrt(3):sqrt(2):1, i.e. with proportions 0.3713..., 0.2626..., 0.2144... and 0.1516... respectively. A083855 is that which would appear using the d'Hondt method (A055440) on these.

Examples

			A083854 starts 1, 2, 3, 4, 6, 8, 9, 12, 16, etc.; i.e. 1*1^2, 2*1^2, 3*1^2, 1*2^2, 6*1^2, 2*2^2, 1*3^2, 3*2^2, 1*4^2, etc. giving 1, 2, 3, 1, 6, 2, 1, 3, 1, etc.
		

Formula

a(n) =A007913(A083854(n)).

A225837 Numbers of form 2^i*3^j*(6k+1), i, j, k >= 0.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 18, 19, 21, 24, 25, 26, 27, 28, 31, 32, 36, 37, 38, 39, 42, 43, 48, 49, 50, 52, 54, 55, 56, 57, 61, 62, 63, 64, 67, 72, 73, 74, 75, 76, 78, 79, 81, 84, 85, 86, 91, 93, 96, 97, 98, 100, 103, 104, 108, 109, 110, 111, 112
Offset: 1

Views

Author

Ralf Stephan, May 16 2013

Keywords

Comments

The asymptotic density of this sequence is 1/2. - Amiram Eldar, Apr 03 2022
From Peter Munn, Nov 16 2023: (Start)
Contains all nonzero squares.
Dividing by 5 the terms that are multiples of 5 gives its complement, A225838.
(A352272, 2*A352272, 3*A352272, 6*A352272) is a partition of the terms.
The terms form a subgroup of the positive integers under the operation A059897(.,.) and are the positive integers in an index 2 multiplicative subgroup of rationals that is generated by 2, 3 and integers congruent to 1 modulo 6. See A225857 and A352272 for further information about such subgroups.
(End)

Crossrefs

Complement of A225838.
Subsequences: A003136\{0}, A083854\{0}, A260488\{0}, A352272.
Symmetric difference of A026225 and A036554; of A036668 and A189716.

Programs

  • Magma
    [n: n in [1..200] | IsOne(d mod 6) where d is n div (2^Valuation(n,2)*3^Valuation(n,3))]; // Bruno Berselli, May 16 2013
    
  • Mathematica
    mx = 122; t = {}; Do[n = 2^i*3^j (6 k + 1); If[n <= mx, AppendTo[t, n]], {i, 0, Log[2, mx]}, {j, 0, Log[3, mx]}, {k, 0, mx/6}]; Union[t] (* T. D. Noe, May 16 2013 *)
  • PARI
    for(n=1,200,t=n/(2^valuation(n,2)*3^valuation(n,3));if((t%6==1),print1(n,",")))
    
  • Python
    from sympy import integer_log
    def A225837(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(((x//3**i>>j)+5)//6 for i in range(integer_log(x,3)[0]+1) for j in range((x//3**i).bit_length()))
        return bisection(f,n,n) # Chai Wah Wu, Feb 02 2025

A083583 a(n) = (8*3^n - 5*0^n)/3.

Original entry on oeis.org

1, 8, 24, 72, 216, 648, 1944, 5832, 17496, 52488, 157464, 472392, 1417176, 4251528, 12754584, 38263752, 114791256, 344373768, 1033121304, 3099363912, 9298091736, 27894275208, 83682825624, 251048476872, 753145430616, 2259436291848
Offset: 0

Views

Author

Paul Barry, May 01 2003

Keywords

Crossrefs

Cf. A083854.

Programs

Formula

a(n) = (8*3^n - 5*0^n)/3.
G.f.: (1+5*x)/(1-3*x).
E.g.f.: (8*exp(3x) - 5*exp(0))/3.
a(n) = A005051(n-1), n > 0. - R. J. Mathar, Sep 17 2008

A083585 (8*5^n - 5*2^n)/3.

Original entry on oeis.org

1, 10, 60, 320, 1640, 8280, 41560, 208120, 1041240, 5207480, 26039960, 130204920, 651034840, 3255194680, 16276014360, 81380153720, 406900932440, 2034504989880, 10172525604760, 50862629334520, 254313149294040
Offset: 0

Views

Author

Paul Barry, May 01 2003

Keywords

Comments

Binomial transform of A083854.

Programs

  • Mathematica
    LinearRecurrence[{7, -10}, {1, 10}, 20] (* T. D. Noe, Aug 06 2013 *)

Formula

a(n) = (8*5^n-5*2^n)/3.
G.f. (1+3x)/((1-2x)(1-5x)).
E.g.f. (8*exp(5x) - 5*exp(2x))/3.
Showing 1-4 of 4 results.