cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083857 Square array T(n,k) of binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 3, 7, 0, 1, 3, 8, 15, 0, 1, 3, 9, 21, 31, 0, 1, 3, 10, 27, 55, 63, 0, 1, 3, 11, 33, 81, 144, 127, 0, 1, 3, 12, 39, 109, 243, 377, 255, 0, 1, 3, 13, 45, 139, 360, 729, 987, 511, 0, 1, 3, 14, 51, 171, 495, 1189, 2187, 2584, 1023, 0, 1, 3, 15, 57, 205, 648
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Comments

Row n >= 0 of the array gives the solution to the recurrence b(k) = 3*b(k-1) + (n-2) * a(k-2) for k >= 2 with a(0) = 0 and a(1) = 1. These are the binomial transforms of the rows of the generalized Fibonacci numbers A083856.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  0, 1, 3,  7, 15,  31,  63,  127,  255, ...
  0, 1, 3,  8, 21,  55, 144,  377,  987, ...
  0, 1, 3,  9, 27,  81, 243,  729, 2187, ...
  0, 1, 3, 10, 33, 109, 360, 1189, 3927, ...
  0, 1, 3, 11, 39, 139, 495, 1763, 6279, ...
  0, 1, 3, 12, 45, 171, 648, 2457, 9315, ...
  ...
		

Crossrefs

Rows include A000225 (n=0), A001906 (n=1), A000244 (n=2), A006190 (n=3), A007482 (n=4), A030195 (n=5), A015521 (n=6).
Cf. A083856, A083861 (binomial transform), A083862 (main diagonal).

Formula

T(n, k) = ((3 + sqrt(4*n + 1))/2)^k / sqrt(4*n + 1) - ((3 - sqrt(4*n + 1))/2)^k / sqrt(4*n + 1) for n, k >= 0.
O.g.f. of row n >= 0: -x/(-1 + 3*x + (n-2)*x^2) . - R. J. Mathar, Nov 23 2007
T(n,k) = Sum_{i = 0..k} binomial(k,i)*A083856(n,i). - Petros Hadjicostas, Dec 24 2019

Extensions

Various sections edited by Petros Hadjicostas, Dec 24 2019