A083857 Square array T(n,k) of binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.
0, 0, 1, 0, 1, 3, 0, 1, 3, 7, 0, 1, 3, 8, 15, 0, 1, 3, 9, 21, 31, 0, 1, 3, 10, 27, 55, 63, 0, 1, 3, 11, 33, 81, 144, 127, 0, 1, 3, 12, 39, 109, 243, 377, 255, 0, 1, 3, 13, 45, 139, 360, 729, 987, 511, 0, 1, 3, 14, 51, 171, 495, 1189, 2187, 2584, 1023, 0, 1, 3, 15, 57, 205, 648
Offset: 0
Examples
Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows: 0, 1, 3, 7, 15, 31, 63, 127, 255, ... 0, 1, 3, 8, 21, 55, 144, 377, 987, ... 0, 1, 3, 9, 27, 81, 243, 729, 2187, ... 0, 1, 3, 10, 33, 109, 360, 1189, 3927, ... 0, 1, 3, 11, 39, 139, 495, 1763, 6279, ... 0, 1, 3, 12, 45, 171, 648, 2457, 9315, ... ...
Links
Crossrefs
Formula
T(n, k) = ((3 + sqrt(4*n + 1))/2)^k / sqrt(4*n + 1) - ((3 - sqrt(4*n + 1))/2)^k / sqrt(4*n + 1) for n, k >= 0.
O.g.f. of row n >= 0: -x/(-1 + 3*x + (n-2)*x^2) . - R. J. Mathar, Nov 23 2007
T(n,k) = Sum_{i = 0..k} binomial(k,i)*A083856(n,i). - Petros Hadjicostas, Dec 24 2019
Extensions
Various sections edited by Petros Hadjicostas, Dec 24 2019
Comments