cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A083862 Main diagonal of array A083857.

Original entry on oeis.org

0, 1, 3, 10, 39, 171, 819, 4229, 23247, 135088, 824163, 5255361, 34876647, 240130801, 1710323667, 12572548582, 95183606559, 740843916471, 5918533467075, 48463830575837, 406239439253175, 3481899731310196
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Crossrefs

Programs

  • Maple
    T := proc(n, k) local v; option remember; if 0 <= n and k = 0 then v := 0; end if; if 0 <= n and k = 1 then v := 1; end if; if 0 <= n and 2 <= k then v := 3*T(n, k - 1) + (n - 2)*T(n, k - 2); end if; v; end proc;
    seq(T(n, n), n = 0 .. 40); # Petros Hadjicostas, Dec 25 2019

Formula

a(n) = (((3 + sqrt(4*n + 1))/2)^n - ((3 - sqrt(4*n + 1))/2)^n)/sqrt(4*n + 1).

A083858 Expansion of x/(1 - 3*x - 6*x^2).

Original entry on oeis.org

0, 1, 3, 15, 63, 279, 1215, 5319, 23247, 101655, 444447, 1943271, 8496495, 37149111, 162426303, 710173575, 3105078543, 13576277079, 59359302495, 259535569959, 1134762524847, 4961500994295, 21693078131967, 94848240361671, 414703189876815, 1813199011800471
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Comments

Binomial transform of A015443. A row of array A083857.
Pisano period lengths: 1, 1, 1, 1, 12, 1, 8, 1, 1, 12, 110, 1, 168, 8, 12, 2, 16, 1, 360, 12, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 3*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,-4}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{3,6}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-3*x-6*x^2))) \\ G. C. Greubel, Jan 16 2018
    
  • Sage
    [lucas_number1(n,3,-6) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = 3*a(n-1) + 6*a(n-2), a(0)=0, a(1)=1.
a(n) = (3*sqrt(33)/2 + 21/2)^(n/2)/sqrt(33) - (21/2 - 3*sqrt(33)/2)^(n/2)*(-1)^n/sqrt(33).
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(6*k+3 + 6*x )/( x*(6*k+6 + 6*x ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 21 2013
a(n) = B(n, k + 2^(n-1)) - B(n,k) where B(n,k) is formed by the family of recursions b(n) = 3*(b(n-1) + b(n-2))/2, with b(0) = 1 and b(1) = k, as explained further in A249861. - Richard R. Forberg, Nov 04 2014
a(n) = Sum_{k=0..n-1} 3^k * 2^(n-1-k) * binomial(k,n-1-k). - Seiichi Manyama, Aug 31 2025

A083856 Square array T(n,k) of generalized Fibonacci numbers, read by antidiagonals upwards (n, k >= 0).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 5, 5, 1, 0, 1, 1, 5, 7, 11, 8, 1, 0, 1, 1, 6, 9, 19, 21, 13, 1, 0, 1, 1, 7, 11, 29, 40, 43, 21, 1, 0, 1, 1, 8, 13, 41, 65, 97, 85, 34, 1, 0, 1, 1, 9, 15, 55, 96, 181, 217, 171, 55, 1
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Comments

Row n >= 0 of the array gives the solution to the recurrence b(k) = b(k-1) + n*b(k-2) for k >= 2 with b(0) = 0 and b(1) = 1.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  0, 1, 1,  1,  1,   1,   1,    1,    1,     1, ... [A057427]
  0, 1, 1,  2,  3,   5,   8,   13,   21,    34, ... [A000045]
  0, 1, 1,  3,  5,  11,  21,   43,   85,   171, ... [A001045]
  0, 1, 1,  4,  7,  19,  40,   97,  217,   508, ... [A006130]
  0, 1, 1,  5,  9,  29,  65,  181,  441,  1165, ... [A006131]
  0, 1, 1,  6, 11,  41,  96,  301,  781,  2286, ... [A015440]
  0, 1, 1,  7, 13,  55, 133,  463, 1261,  4039, ... [A015441]
  0, 1, 1,  8, 15,  71, 176,  673, 1905,  6616, ... [A015442]
  0, 1, 1,  9, 17,  89, 225,  937, 2737, 10233, ... [A015443]
  0, 1, 1, 10, 19, 109, 280, 1261, 3781, 15130, ... [A015445]
  ...
		

Crossrefs

Rows include A057427 (n=0), A000045 (n=1), A001045 (n=2), A006130 (n=3), A006131 (n=4), A015440 (n=5), A015441 (n=6), A015442 (n=7), A015443 (n=8), A015445 (n=9).
Columns include A000012 (k=1,2), A000027 (k=3), A005408 (k=4), A028387 (k=5), A000567 (k=6), A106734 (k=7).
Cf. A083857 (binomial transform), A083859 (main diagonal), A083860 (first subdiagonal), A083861 (second binomial transform), A110112, A110113 (diagonal sums), A193376 (transposed variant), A172237 (transposed variant).

Programs

  • Julia
    function generalized_fibonacci(r, n)
       F = BigInt[1 r; 1 0]
       Fn = F^n
       Fn[2, 1]
    end
    for r in 0:6 println([generalized_fibonacci(r, n) for n in 0:9]) end # Peter Luschny, Mar 06 2017
  • Maple
    A083856_row := proc(r, n) local R; R := proc(n) option remember;
    if n<=1 then n else R(n-1)+r*R(n-2) fi end: R(n) end:
    for r from 0 to 9 do seq(A083856_row(r, n), n=0..9) od; # Peter Luschny, Mar 06 2017
  • Mathematica
    T[, 0] = 0; T[, 1|2] = 1; T[n_, k_] := T[n, k] = T[n, k-1] + n T[n, k-2];
    Table[T[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)

Formula

T(n, k) = (((1 + sqrt(4*n + 1))/2)^k - ((1 - sqrt(4*n + 1))/2)^k)/sqrt(4*n + 1). [corrected by Michel Marcus, Jun 25 2018]
From Thomas Baruchel, Jun 25 2018: (Start)
The g.f. for row n >= 0 is x/(1 - x - n*x^2).
The g.f. for column k >= 1 is g(k,x) = 1/(1-x) + Sum_{m = 1..floor((k-1)/2)} (1 - x)^(-1 - m) * binomial(k - 1 - m, m) * Sum_{i = 0..m} x^i * Sum_{j = 0..i} (-1)^j * (i - j)^m * binomial(1 + m, j).
The g.f. for column k >= 1 is also g(k,x) = 1 + Sum_{m = 1..floor((k+1)/2)} ((1 - x)^(-m) * binomial(k-m, m-1) * Sum_{j = 0..m} (-1)^j * binomial(m, j) * x^m * Phi(x, -m+1, -j+m)) + Sum_{s = 0..floor((k-1)/2)} binomial(k-s-1, s) * PolyLog(-s, x), where Phi is the Lerch transcendent function. (End)
T(n,k) = Sum_{i = 0..k} (-1)^(k+i) * binomial(k,i) * A083857(n,i). - Petros Hadjicostas, Dec 24 2019

Extensions

Various sections edited by Petros Hadjicostas, Dec 24 2019

A083861 Square array T(n,k) of second binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 5, 0, 1, 5, 19, 0, 1, 5, 20, 65, 0, 1, 5, 21, 75, 211, 0, 1, 5, 22, 85, 275, 665, 0, 1, 5, 23, 95, 341, 1000, 2059, 0, 1, 5, 24, 105, 409, 1365, 3625, 6305, 0, 1, 5, 25, 115, 479, 1760, 5461, 13125, 19171, 0, 1, 5, 26, 125, 551, 2185, 7573, 21845, 47500, 58025
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Comments

Row n >= 0 of the array gives the solution to the recurrence b(k) = 5*b(k-1) + (n - 6)*b(k-2) for k >= 2 with b(0) = 0 and b(1) = 1. The rows are the binomial transforms of the rows of array A083857. The rows are the second binomial transforms of the generalized Fibonacci numbers in array A083856.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  0, 1, 5, 19,  65, 211,  665,  2059,  6305,  19171, ...
  0, 1, 5, 20,  75, 275, 1000,  3625, 13125,  47500, ...
  0, 1, 5, 21,  85, 341, 1365,  5461, 21845,  87381, ...
  0, 1, 5, 22,  95, 409, 1760,  7573, 32585, 140206, ...
  0, 1, 5, 23, 105, 479, 2185,  9967, 45465, 207391, ...
  0, 1, 5, 24, 115, 551, 2640, 12649, 60605, 290376, ...
  0, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, ...
  ...
		

Crossrefs

Rows include A001047 (n=0), A093131 (n=1), A002450 (n=2), A004254 (n=5), A000351 (n=6), A052918 (n=7), A015535 (n=8), A015536 (n=9), A015537 (n=10).
Cf. A083856 (second inverse binomial transform), A083856 (first inverse binomial transform), A082297 (main diagonal).

Programs

  • Magma
    T:= func< n,k | Round( (((5+Sqrt(4*n+1))/2)^k - ((5-Sqrt(4*n+1))/2)^k)/Sqrt(4*n + 1) ) >;
    [T(n-k,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 27 2019
    
  • Maple
    seq(seq(round( (((5+sqrt(4*(n-k)+1))/2)^k - ((5-sqrt(4*(n-k)+1))/2)^k)/sqrt(4*(n-k)+1) ), k=0..n), n=0..10); # G. C. Greubel, Dec 27 2019
  • Mathematica
    T[n_, k_]:= Round[(((5 +Sqrt[4*n+1])/2)^k - ((5 -Sqrt[4*n+1])/2)^k)/Sqrt[4*n+1]]; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 27 2019 *)
  • PARI
    T(n, k) = round( (((5+sqrt(4*n+1))/2)^k - ((5-sqrt(4*n+1))/2)^k)/sqrt(4*n + 1) );
    for(n=0,10, for(k=0,n, print1(T(n-k,k), ", "))) \\ G. C. Greubel, Dec 27 2019
    
  • Sage
    [[round( (((5+sqrt(4*(n-k)+1))/2)^k - ((5-sqrt(4*(n-k)+1))/2)^k)/sqrt(4*(n-k)+1) ) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 27 2019

Formula

T(n, k) = (((5 + sqrt(4*n + 1))/2)^k - ((5 - sqrt(4*n + 1))/2)^k)/sqrt(4*n + 1).
O.g.f. for row n >= 0: -x/(-1 + 5*x + (n-6)*x^2) . - R. J. Mathar, Dec 02 2007
From Petros Hadjicostas, Dec 25 2019: (Start)
T(n,k) = 5*T(n,k-1) + (n - 6)*T(n,k-2) for k >= 2 with T(n,0) = 0 and T(n,1) = 1 for all n >= 0.
T(n,k) = Sum_{i = 0..k} binomial(k,i) * A083857(n,i).
T(n,k) = Sum_{i = 0..k} Sum_{j = 0..i} binomial(k,i) * binomial(i,j) * A083856(n,j). (End)

Extensions

Name and various sections edited by Petros Hadjicostas, Dec 25 2019
Showing 1-4 of 4 results.