A083912 Number of divisors of n that are congruent to 2 modulo 10.
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
Crossrefs
Programs
-
Mathematica
a[n_] := Sum[If[Mod[d, 10] == 2, 1, 0], {d, Divisors[n]}]; Array[a, 105] (* Jean-François Alcover, Dec 02 2021 *) a[n_] := DivisorSum[n, 1 &, Mod[#, 10] == 2 &]; Array[a, 100] (* Amiram Eldar, Dec 30 2023 *)
-
PARI
A083912(n) = sumdiv(n,d,2==(d%10)); \\ Antti Karttunen, Jan 22 2020
Formula
a(n) = A000005(n) - A083910(n) - A083911(n) - A083913(n) - A083914(n) - A083915(n) - A083916(n) - A083917(n) - A083918(n) - A083919(n).
G.f.: Sum_{k>=1} x^(2*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(2,10) - (1 - gamma)/10 = 0.256367..., gamma(2,10) = -(psi(1/5) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023