A083914 Number of divisors of n that are congruent to 4 modulo 10.
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
- R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
Crossrefs
Programs
-
Mathematica
Table[Count[Divisors[n],?(Mod[#,10]==4&)],{n,110}] (* _Harvey P. Dale, Dec 09 2014 *) a[n_] := DivisorSum[n, 1 &, Mod[#, 10] == 4 &]; Array[a, 100] (* Amiram Eldar, Dec 30 2023 *)
-
PARI
A083914(n) = sumdiv(n,d,(4==(d%10))); \\ Antti Karttunen, Nov 07 2018
Formula
a(n) = A000005(n) - A083910(n) - A083911(n) - A083912(n) - A083913(n) - A083915(n) - A083916(n) - A083917(n) - A083918(n) - A083919(n).
G.f.: Sum_{k>=1} x^(4*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(4,10) - (1 - gamma)/10 = -0.0163984..., gamma(4,10) = -(psi(2/5) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Dec 30 2023