A083969 Numbers n such that 2.n.3.n.5.n.7.n.11 is prime (dot means concatenation).
4, 18, 33, 42, 43, 57, 73, 76, 78, 87, 91, 93, 97, 102, 112, 114, 120, 141, 151, 177, 186, 193, 196, 219, 261, 267, 276, 280, 300, 307, 318, 322, 342, 352, 364, 366, 402, 435, 438, 445, 457, 462, 468, 484, 511, 580, 582, 633, 646, 651, 679, 706, 745, 774, 783
Offset: 1
Examples
2.4.3.4.5.4.7.4.11 = 2434547411, which is prime. Hence 4 is in the sequence.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
v={};Do[If[PrimeQ[FromDigits[Join[{2}, IntegerDigits[n], {3}, IntegerDigits[n], {5}, IntegerDigits[n], {7}, IntegerDigits[n], {1, 1}]]], v=Append[v, n]], {n, 1000}];v Select[Range[660], PrimeQ[FromDigits[Join[{2}, IntegerDigits[ # ], {3}, IntegerDigits[ # ], {5}, IntegerDigits[ # ], {7}, IntegerDigits[ # ], {1, 1}]]] &] (* Stefan Steinerberger, Jun 28 2007 *)
-
Python
from sympy import isprime def aupton(terms): n, alst = 1, [] while len(alst) < terms: s = str(n) t = int('2'+s+'3'+s+'5'+s+'7'+s+'11') if isprime(t): alst.append(n) n += 1 return alst print(aupton(55)) # Michael S. Branicky, Apr 18 2021
Extensions
Edited by Stefan Steinerberger, Jun 28 2007
Edited by N. J. A. Sloane, Sep 18 2008 at the suggestion of R. J. Mathar