cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A084339 7*n digit-reversed mod 7.

Original entry on oeis.org

6, 5, 5, 4, 3, 3, 2, 1, 0, 0, 6, 5, 5, 4, 1, 1, 5, 2, 6, 6, 3, 0, 0, 4, 1, 1, 5, 1, 5, 5, 2, 6, 6, 3, 0, 0, 4, 1, 5, 5, 2, 5, 5, 2, 6, 6, 3, 0, 4, 4, 1, 5, 5, 2, 6, 6, 2, 6, 3, 3, 0, 4, 4, 1, 5, 5, 2, 6, 3, 3, 6, 3, 3, 0, 4, 4, 1, 5, 2, 2, 6, 3, 3, 0, 3, 3, 0, 4, 1, 1, 5, 2, 2, 6, 3, 3, 0, 4, 0, 0, 4, 1, 1, 5, 2
Offset: 2

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 26 2003

Keywords

Comments

Unlike the cases 2, 4, 5 and 6 there is no clear pattern.

Crossrefs

Programs

  • Mathematica
    Table[Mod[IntegerReverse[7n],7],{n,2,110}] (* Harvey P. Dale, Aug 29 2023 *)

Extensions

More terms from Ray Chandler, May 27 2003

A084052 2*n digit-reversed mod 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 5

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 26 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A000035(A004093(n)). - Michel Marcus, Nov 14 2022

Extensions

More terms from Ray Chandler, May 27 2003

A084053 4*n digit-reversed mod 4.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 3, 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 0, 0, 0, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 3, 3, 1, 1, 1, 3, 3, 1, 1, 1, 3, 3, 1, 1, 1, 3, 3, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 2, 2, 2, 0, 0, 3, 3, 3, 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0
Offset: 3

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 26 2003

Keywords

Examples

			a(23) =1 as, 23*4 = 92,digit-reversed = 29 ==1 (mod 4)
		

Crossrefs

Programs

  • Mathematica
    Mod[#,4]&/@(FromDigits[Reverse[IntegerDigits[#]]]&/@ (4Range[3,110])) (* Harvey P. Dale, Sep 30 2011 *)

Extensions

More terms from Ray Chandler, May 27 2003

A084054 5*n digit-reversed mod 5.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0
Offset: 2

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 26 2003

Keywords

Comments

The pattern of increasing frequency of repetition of digits is clear.

Examples

			a(61) =3 as, 61*5 = 305,digit reversed = 503 ==3 (mod 5)
		

Crossrefs

Programs

  • Mathematica
    Contribution from Enrique Pérez Herrero, Jun 14 2010: (Start)
    A084054[n_Integer]:=Mod[FromDigits[Reverse[IntegerDigits[5*n]]],5];
    (* Alternative formula *)
    A084054[n_Integer]:=Mod[Floor[5*n/10^Floor[Log[10,5*n]]],5] (End)

Formula

Contribution from Enrique Pérez Herrero, Jun 14 2010: (Start)
a(n)=mod(floor(5*n/10^(floor(log_10(5*n)))),5), this formula comes from the modulus 5 of the first digit of 5*n.
a(10^n)=1
(End)

Extensions

More terms from Ray Chandler, May 27 2003

A084340 8*n digit-reversed mod 8.

Original entry on oeis.org

5, 2, 7, 4, 4, 1, 6, 3, 0, 0, 5, 1, 3, 5, 5, 7, 1, 3, 5, 5, 7, 1, 3, 2, 2, 4, 6, 0, 2, 2, 4, 6, 0, 2, 2, 4, 3, 5, 7, 7, 1, 3, 5, 7, 7, 1, 3, 5, 4, 4, 6, 0, 2, 4, 4, 6, 0, 2, 4, 4, 6, 5, 7, 1, 1, 3, 5, 7, 1, 1, 3, 5, 7, 6, 6, 0, 2, 4, 6, 6, 0, 2, 4, 6, 6, 0, 7, 1, 3, 3, 5, 7, 1, 3, 3, 5, 7, 1, 0, 0, 2, 4, 6, 0, 0
Offset: 2

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 26 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Mod[IntegerReverse[8*n],8],{n,2,110}] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Jan 14 2016 *)

Extensions

More terms from Ray Chandler, May 27 2003

A084341 13*n digit-reversed mod 13.

Original entry on oeis.org

5, 10, 2, 12, 4, 9, 6, 11, 9, 5, 3, 1, 12, 8, 6, 9, 5, 3, 1, 10, 8, 6, 4, 5, 3, 1, 10, 8, 6, 2, 5, 3, 1, 10, 8, 6, 2, 0, 3, 12, 10, 8, 6, 2, 0, 11, 12, 10, 8, 4, 2, 0, 11, 12, 10, 8, 4, 2, 0, 9, 7, 10, 8, 4, 2, 0, 9, 7, 5, 6, 4, 2, 0, 9, 7, 5, 0, 6, 12, 11, 4, 10, 3, 2, 6, 12, 11, 4, 10, 9, 2, 8, 12
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 26 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Mod[FromDigits[Reverse[IntegerDigits[13n]]],13],{n,100}] (* Harvey P. Dale, Jun 07 2011 *)

Extensions

More terms from Ray Chandler, May 27 2003
Showing 1-6 of 6 results.