A084057 a(n) = 2*a(n-1) + 4*a(n-2), a(0)=1, a(1)=1.
1, 1, 6, 16, 56, 176, 576, 1856, 6016, 19456, 62976, 203776, 659456, 2134016, 6905856, 22347776, 72318976, 234029056, 757334016, 2450784256, 7930904576, 25664946176, 83053510656, 268766806016, 869747654656, 2814562533376, 9108115685376, 29474481504256
Offset: 0
References
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,4).
Crossrefs
Programs
-
Magma
I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 31 2016
-
Mathematica
f[n_] := Simplify[((1 + Sqrt[5])^n + (1 - Sqrt[5])^n)/2]; Array[f, 28, 0] (* Or *) LinearRecurrence[{2, 4}, {1, 1}, 28] (* Robert G. Wilson v, Sep 18 2013 *) RecurrenceTable[{a[1] == 1, a[2] == 1, a[n] == 2 a[n-1] + 4 a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Jul 31 2016 *) Table[2^(n-1) LucasL[n], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 19 2016 *)
-
PARI
lucas(n)=fibonacci(n-1)+fibonacci(n+1) a(n)=lucas(n)/2*2^n \\ Charles R Greathouse IV, Sep 18 2013
-
Sage
from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,1,2,4, lambda n: 0); [next(it) for i in range(1,26)] # Zerinvary Lajos, Jul 09 2008
-
Sage
[lucas_number2(n,2,-4)/2 for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009
Formula
a(n) = ((1+sqrt(5))^n + (1-sqrt(5))^n)/2.
G.f.: (1-x) / (1-2*x-4*x^2).
E.g.f.: exp(x) * cosh(sqrt(5)*x).
a(2n+1) = 2*a(n)*a(n+1) - (-4)^n. - Mario Catalani (mario.catalani(AT)unito.it), Jun 13 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*5^k . - Paul Barry, Jul 25 2004
a(n) = Sum_{k=0..n} A098158(n,k)*5^(n-k). - Philippe Deléham, Dec 26 2007
If p(1)=1, and p(i)=5 for i>1, and if A is the Hessenberg matrix of order n defined by: A(i,j) = p(j-i+1) for i<=j, A(i,j):=-1, (i=j+1), and A(i,j):=0 otherwise, then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(5*k-1)/(x*(5*k+4) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = 1 + 5*A014335(n). - R. J. Mathar, Jun 06 2019
Sum_{n>=1} 1/a(n) = A269992. - Amiram Eldar, Feb 01 2021
Comments