A084127 Prime factor >= other prime factor of n-th semiprime.
2, 3, 3, 5, 7, 5, 7, 11, 5, 13, 11, 17, 7, 19, 13, 23, 7, 17, 11, 19, 29, 31, 13, 23, 37, 11, 41, 17, 43, 29, 13, 31, 47, 19, 53, 37, 23, 59, 17, 11, 61, 41, 43, 19, 67, 47, 71, 13, 29, 73, 31, 79, 53, 23, 83, 13, 59, 89, 61, 37, 17, 97, 67, 101, 29, 41, 103, 19, 71, 107, 43, 31
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Semiprime
Crossrefs
Programs
-
Haskell
a084127 = a006530 . a001358 -- Reinhard Zumkeller, Nov 25 2012
-
Mathematica
FactorInteger[#][[-1, 1]]& /@ Select[Range[1000], PrimeOmega[#] == 2&] (* Jean-François Alcover, Nov 17 2021 *)
-
PARI
lista(nn) = {for (n=2, nn, if (bigomega(n)==2, f = factor(n); print1(f[length(f~),1], ", ")););} \\ Michel Marcus, Jun 05 2013
-
Python
from math import isqrt from sympy import primepi, primerange, primefactors def A084127(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1))) return max(primefactors(bisection(f,n,n))) # Chai Wah Wu, Oct 23 2024
Formula
Extensions
Corrected by T. D. Noe, Nov 15 2006
Comments