A084155 A Pell-related fourth-order recurrence.
0, 1, 4, 19, 88, 401, 1804, 8051, 35760, 158401, 700564, 3095731, 13673224, 60375953, 266559388, 1176763859, 5194762080, 22931453953, 101225940772, 446836798675, 1972442421688, 8706804701201, 38433749994028
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-18,8,7)
Programs
-
GAP
a:=[0,1,4,19];; for n in [5..25] do a[n]:=8*a[n-1]-18*a[n-2]+8*a[n-3]+7*a[n-4]; od; a; # Muniru A Asiru, Oct 18 2018
-
Magma
I:=[0,1,4,19]; [n le 4 select I[n] else 8*Self(n-1) -18*Self(n-2) +8*Self(n-3) +7*Self(n-4): n in [1..40]]; // G. C. Greubel, Oct 17 2018
-
Maple
seq(coeff(series(x*(1-4*x+5*x^2)/((1-2*x-x^2)*(1-6*x+7*x^2)),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 18 2018
-
Mathematica
LinearRecurrence[{8,-18,8,7},{0,1,4,19},30] (* Harvey P. Dale, Aug 16 2015 *)
-
PARI
m=40; v=concat([0,1,4,19], vector(m-4)); for(n=5, m, v[n] = 8*v[n-1] -18*v[n-2] +8*v[n-3] +7*v[n-4]); v \\ G. C. Greubel, Oct 17 2018
Comments