A084182 a(n) = 3^n + (-1)^n - [1/(n+1)], where [] represents the floor function.
1, 2, 10, 26, 82, 242, 730, 2186, 6562, 19682, 59050, 177146, 531442, 1594322, 4782970, 14348906, 43046722, 129140162, 387420490, 1162261466, 3486784402, 10460353202, 31381059610, 94143178826, 282429536482, 847288609442, 2541865828330, 7625597484986
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,3).
Programs
-
Mathematica
LinearRecurrence[{2,3},{1,2,10},30] (* Harvey P. Dale, Apr 27 2016 *)
Formula
a(n) = 3^n + (-1)^n - 0^n.
G.f.: (1+3*x^2)/((1+x)*(1-3*x)).
E.g.f.: exp(3*x)-exp(0)+exp(-x).
a(n) = 2 * A046717(n) for n >= 1.
Comments