cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084182 a(n) = 3^n + (-1)^n - [1/(n+1)], where [] represents the floor function.

Original entry on oeis.org

1, 2, 10, 26, 82, 242, 730, 2186, 6562, 19682, 59050, 177146, 531442, 1594322, 4782970, 14348906, 43046722, 129140162, 387420490, 1162261466, 3486784402, 10460353202, 31381059610, 94143178826, 282429536482, 847288609442, 2541865828330, 7625597484986
Offset: 0

Views

Author

Paul Barry, May 19 2003

Keywords

Comments

Binomial transform of A084181.
From Peter Bala, Dec 26 2012: (Start)
Let F(x) = product {n >= 0} (1 - x^(3*n+1))/(1 - x^(3*n+2)). This sequence is the simple continued fraction expansion of the real number F(-1/3) = 1.47627 73316 74531 44215 ... = 1 + 1/(2 + 1/(10 + 1/(26 + 1/(82 + ...)))). See A111317.
(End)

Crossrefs

Except for leading term, same as A102345.

Programs

  • Mathematica
    LinearRecurrence[{2,3},{1,2,10},30] (* Harvey P. Dale, Apr 27 2016 *)

Formula

a(n) = 3^n + (-1)^n - 0^n.
G.f.: (1+3*x^2)/((1+x)*(1-3*x)).
E.g.f.: exp(3*x)-exp(0)+exp(-x).
a(n) = 2 * A046717(n) for n >= 1.