A084201 Primes p such that the sum of the digits is prime and the sum of the digits of 2p is also prime.
7, 29, 47, 61, 83, 137, 139, 151, 173, 191, 193, 227, 229, 263, 281, 283, 317, 337, 353, 373, 409, 461, 463, 557, 577, 599, 601, 641, 643, 733, 757, 797, 821, 823, 887, 911, 977, 1019, 1039, 1051, 1091, 1093, 1109, 1129, 1163, 1181, 1217, 1237, 1291
Offset: 1
Examples
2+9=11=prime for 29 and 5+8=13=prime for 58=2*29; 1+3+7=11=prime for 137 and 2+7+4=13=prime for 274=2*137; 1+3+9=13=prime for 139 and 2+7+8=17=prime for 278=2*139.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) isprime(n) and isprime(convert(convert(n,base,10),`+`)) and isprime(convert(convert(2*n,base,10),`+`)) end proc: select(filter, [seq(i,i=3..5000,2)]); # Robert Israel, Sep 04 2019
-
Mathematica
Select[Prime[Range[300]],And@@PrimeQ[Total/@{IntegerDigits[#], IntegerDigits[2 #]}]&] (* Harvey P. Dale, Jun 26 2011 *) Select[Prime[Range[500]],AllTrue[{Total[IntegerDigits[#]],Total[IntegerDigits[2#]]},PrimeQ]&] (* Harvey P. Dale, Jan 27 2025 *)
Extensions
More terms from Reinhard Zumkeller, Jun 26 2003
Offset changed to 1 by Robert Israel, Sep 04 2019
Comments