A084232 RMS values associated with A084231.
1, 195, 37829, 7338631, 1423656585, 276182038859, 53577891882061, 10393834843080975, 2016350381665827089, 391161580208327374291, 75883330210033844785365, 14720974899166357560986519, 2855793247108063332986599321, 554009168964065120241839281755
Offset: 0
Examples
a(1)=195 because 195 = sqrt((Sum_{k=1..337}k^2)/337) and 337 = A084231(1).
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..436
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (194,-1).
Programs
-
Mathematica
LinearRecurrence[{194,-1},{1,195},20] (* Harvey P. Dale, Nov 10 2021 *)
Formula
a(n) = ((7+4*sqrt(3))^(2*n+1)-(7-4*sqrt(3))^(2*n+1))/(8*sqrt(3)). [simplified by Bruno Berselli, Oct 19 2012]
a(n) = floor(((7*sqrt(3) + 12)/24)*(56*sqrt(3) + 97)^n).
a(n+2) = 194*a(n+1) - a(n).
G.f.: (1-x)/(1-194*x+x^2). - Philippe Deléham, Nov 18 2008
Comments