cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084232 RMS values associated with A084231.

Original entry on oeis.org

1, 195, 37829, 7338631, 1423656585, 276182038859, 53577891882061, 10393834843080975, 2016350381665827089, 391161580208327374291, 75883330210033844785365, 14720974899166357560986519, 2855793247108063332986599321, 554009168964065120241839281755
Offset: 0

Views

Author

Keywords

Comments

From Klaus Purath, Aug 20 2025: (Start)
Solutions to the Pell equation (7*b(n))^2 - 3*(4*a(n))^2 = 1. The corresponding b(n) are given by A302332.
For any two consecutive terms (x,y), x^2 - 194*x*y + y^2 - 196 = 0. By analogy to this, for three consecutive terms (x, y, z), y^2 - x*z - 196 = 0. (End)

Examples

			a(1)=195 because 195 = sqrt((Sum_{k=1..337}k^2)/337) and 337 = A084231(1).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{194,-1},{1,195},20] (* Harvey P. Dale, Nov 10 2021 *)

Formula

a(n) = ((7+4*sqrt(3))^(2*n+1)-(7-4*sqrt(3))^(2*n+1))/(8*sqrt(3)). [simplified by Bruno Berselli, Oct 19 2012]
a(n) = floor(((7*sqrt(3) + 12)/24)*(56*sqrt(3) + 97)^n).
a(n+2) = 194*a(n+1) - a(n).
G.f.: (1-x)/(1-194*x+x^2). - Philippe Deléham, Nov 18 2008
a(n)^2 = (Sum_{i=1..A084231(n+1)}i^2)/A084231(n+1). - Bruno Berselli, Oct 17 2012