A084264 Binomial transform of A084263.
1, 2, 7, 22, 64, 176, 464, 1184, 2944, 7168, 17152, 40448, 94208, 217088, 495616, 1122304, 2523136, 5636096, 12517376, 27656192, 60817408, 133169152, 290455552, 631242752, 1367343104, 2952790016, 6358564864, 13656653824, 29259464704
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Book Graph
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8)
Crossrefs
Cf. A084263.
Programs
-
Mathematica
CoefficientList[Series[(-1 + x)(1 - 3 x + 4 x^2)/(-1 + 2 x)^3, {x, 0, 30}], x] Join[{1}, LinearRecurrence[{6, -12, 8}, {2, 7, 22}, 30]] Table[If[n == 0, 1, 2^(n - 3) (n^2 + 3 n + 4)], {n, 0, 20}] (* Eric W. Weisstein, Sep 30 2017 *)
Formula
E.g.f.: exp(x)*cosh(x)+exp(2*x)*(x+x^2/2).
O.g.f.: (1-x)*(1-3*x+4*x^2)/(1-2*x)^3. - R. J. Mathar, Apr 02 2008
a(0)=1, a(1)=2, a(2)=7, a(3)=22, a(n) = 6*a(n-1)-12*a(n-2)+8*a(n-3). - Harvey P. Dale, Mar 25 2012
a(n) = 2^(n-3)*(n^2+3*n+4) for n > 0. - Eric W. Weisstein, Sep 30 2017
Comments