cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084263 a(n) = (-1)^n/2+(n^2+n+1)/2.

Original entry on oeis.org

1, 1, 4, 6, 11, 15, 22, 28, 37, 45, 56, 66, 79, 91, 106, 120, 137, 153, 172, 190, 211, 231, 254, 276, 301, 325, 352, 378, 407, 435, 466, 496, 529, 561, 596, 630, 667, 703, 742, 780, 821, 861, 904, 946, 991, 1035, 1082, 1128, 1177, 1225, 1276, 1326, 1379, 1431
Offset: 0

Views

Author

Paul Barry, May 31 2003

Keywords

Comments

Old name was "Modified triangular numbers".
Starting with offset 1 = row sums of an infinite lower triangular matrix with alternate columns of (1, 3, 5, 7, ...) and (1, 0, 0, 0, ...) (see example). - Gary W. Adamson, May 14 2010

Examples

			From _Gary W. Adamson_, May 14 2010: (Start)
First few rows of the triangle with row sums = A084263 =
1;
3, 1;
5, 0, 1;
7, 0, 3, 1;
9, 0, 5, 0, 1;
11, 0, 7, 0, 3, 1;
...
Example: a(4) = 11 = (7 + 0 + 3 + 1). (End)
		

Crossrefs

Partial sums of A004442.

Programs

Formula

E.g.f.: cosh(x)+exp(x)*(x+x^2/2).
a(n) = Sum_{k=0..n} k+(-1)^k.
a(n) = A000217(n)+A059841(n). Partial sums are A084570. Binomial transform is A084264.
G.f.: (1-x+2*x^2)/((1-x)^3*(1+x)). - R. J. Mathar, Apr 02 2008
a(0) = 1, a(n) = n^2 - a(n-1) + 1 for n >= 1. - Richard R. Forberg, Jun 05 2013
a(n) = 1 + floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) + a(n+1) = A002522(n+1). - R. J. Mathar, May 21 2018
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). - Wesley Ivan Hurt, Dec 23 2021

Extensions

Name changed by Wesley Ivan Hurt, Dec 23 2021

A104270 a(n) = 2^(n - 2)*(binomial(n,2) + 2).

Original entry on oeis.org

1, 3, 10, 32, 96, 272, 736, 1920, 4864, 12032, 29184, 69632, 163840, 380928, 876544, 1998848, 4521984, 10158080, 22675456, 50331648, 111149056, 244318208, 534773760, 1166016512, 2533359616, 5486149632, 11844714496, 25501368320, 54760833024, 117306294272, 250718715904
Offset: 1

Views

Author

Ralf Stephan, Apr 17 2005

Keywords

Comments

Cardinality of set of crossing-similarity classes.
Total number of hexagonal systems with n hexagons that cannot be placed in a cage of size n-1. - Parthasarathy Nambi, Sep 06 2006
a(n+1) is equal to n! times the determinant of the n X n matrix whose (i,j)-entry is KroneckerDelta[i,j](((i+2)/(i)) - 1) + 1. - John M. Campbell, May 20 2011

Crossrefs

Equals (1/2) A053730. Partial sums of A084264.

Programs

  • Magma
    [2^(n-2)*(Binomial(n,2)+2): n in [1..30]]; // Vincenzo Librandi, May 24 2011
    
  • Mathematica
    Table[n!*Det[Array[KroneckerDelta[#1,#2](((#1+2)/(#1))-1)+1 &, {n,n}]], {n, 1, 10}] (* John M. Campbell, May 20 2011 *)
    LinearRecurrence[{6,-12,8},{1,3,10},30] (* Harvey P. Dale, Jul 03 2017 *)
  • PARI
    a(n)=(binomial(n,2)+2)<<(n-2) \\ Charles R Greathouse IV, May 24 2011

Formula

G.f.: x*(1 - 3*x + 4*x^2)/(1-2*x)^3. - Colin Barker, Apr 01 2012
Showing 1-2 of 2 results.