cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084367 a(n) = n*(2*n+1)^2.

Original entry on oeis.org

0, 9, 50, 147, 324, 605, 1014, 1575, 2312, 3249, 4410, 5819, 7500, 9477, 11774, 14415, 17424, 20825, 24642, 28899, 33620, 38829, 44550, 50807, 57624, 65025, 73034, 81675, 90972, 100949, 111630, 123039, 135200, 148137, 161874
Offset: 0

Views

Author

Charlie Marion, Jun 22 2003

Keywords

Examples

			a(3) = 147 since 147 = 3*7^2.
		

Crossrefs

Programs

  • Magma
    I:=[0, 9, 50, 147]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
  • Mathematica
    CoefficientList[Series[x*(9+14*x+x^2)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)

Formula

a(n) = n*( n*(2*n+1)+1 + n*(2*n+1)+2 + ... + n*(2*n+1)+2*n ).
a(n) = n*A016754(n); n*a(n) = A014105(n)^2.
G.f.: x*(9+14*x+x^2)/(1-x)^4. - Colin Barker, Jun 30 2012
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Jul 04 2012
Sum_{n>=1} 1/a(n) = 4 - 2*log(2) - Pi^2/4. - Amiram Eldar, Jul 21 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/2 + log(2) + 2*G - 4, where G is Catalan's constant (A006752). - Amiram Eldar, Feb 08 2022
E.g.f.: exp(x)*x*(9 + 16*x + 4*x^2). - Stefano Spezia, Sep 27 2023