A084509 Number of ground-state 3-ball juggling sequences of period n.
1, 1, 2, 6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624, 105553116266496, 422212465065984
Offset: 0
References
- B. Polster, The Mathematics of Juggling, Springer-Verlag, 2003, p. 48.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1662
- Fan Chung and R. L. Graham, Primitive juggling sequences, Amer. Math. Monthly 115(3) (2008), 185-19.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Kai Ting Keshia Yap, David Wehlau, and Imed Zaguia, Permutations Avoiding Certain Partially-ordered Patterns, arXiv:2101.12061 [math.CO], 2021.
- Index entries for sequences related to juggling
- Index entries for linear recurrences with constant coefficients, signature (4).
Crossrefs
Programs
-
Maple
A084509 := n -> `if`((n<4),n!,6*(4^(n-3))); INVERT([seq(A084519(n),n=1..12)]);
-
Mathematica
LinearRecurrence[{4},{1,2,6},30] (* Harvey P. Dale, Aug 23 2018 *)
Formula
a(n) = n! for n <= 4, a(n) = 6*4^(n-3) = A002023(n-3) for n >= 3.
G.f.: 1 + x*(1 - 2*x - 2*x^2)/(1 - 4*x). - Philippe Deléham, Aug 16 2005
Extensions
a(0)=1 prepended by Alois P. Heinz, Dec 11 2020
Comments