A084519 Number of indecomposable ground-state 3-ball juggling sequences of period n.
1, 1, 3, 13, 47, 173, 639, 2357, 8695, 32077, 118335, 436549, 1610471, 5941181, 21917583, 80856053, 298285687, 1100404333, 4059496479, 14975869477, 55247410055, 203812962077, 751885445295, 2773777080149, 10232728055191
Offset: 1
Keywords
References
- Carsten Elsner, Dominic Klyve and Erik R. Tou, A zeta function for juggling sequences, Journal of Combinatorics and Number Theory, Volume 4, Issue 1, 2012, pp. 1-13; ISSN 1942-5600
Links
- Fan Chung, R. L. Graham, Primitive juggling sequences, Am. Math. Monthly 115 (3) (2008) 185-194
- Index entries for sequences related to juggling
- Index entries for linear recurrences with constant coefficients, signature (3, 2, 2).
Crossrefs
Cf. A145463. - Gary W. Adamson, Oct 11 2008
Programs
-
Maple
INVERTi([seq(A084509(n),n=1..80)]); with(combinat); A084519 := proc(n) option remember; local c,i,k; A084509(n)-add(add(mul(A084519(i),i=c),c=composition(n,k)),k=2..n); end;
-
Mathematica
LinearRecurrence[{3,2,2},{1,1,3},30] (* Harvey P. Dale, Jul 20 2013 *)
Formula
a(n) seems to satisfy the recurrence: a(1) = a(2) = 1, a(3) = 3 and a(n) = 3*a(n-1)+2*a(n-2)+2*a(n-3). If so, a(n) = floor(A*B^n+1/2) where B = 3.6890953... is the real positive root of x^3-3x^2-2x-2 = 0 and A = 0.0687059... is the real positive root of 118*x^3+118*x^2+35*x-3 = 0. - Benoit Cloitre, Jun 14 2003 [This conjecture is established in the Chung-Graham paper.]
G.f.: x*(1-2*x-2*x^2)/(1-3*x-2*x^2-2*x^3). - Colin Barker, Jan 14 2012
Comments