cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084519 Number of indecomposable ground-state 3-ball juggling sequences of period n.

Original entry on oeis.org

1, 1, 3, 13, 47, 173, 639, 2357, 8695, 32077, 118335, 436549, 1610471, 5941181, 21917583, 80856053, 298285687, 1100404333, 4059496479, 14975869477, 55247410055, 203812962077, 751885445295, 2773777080149, 10232728055191
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2003

Keywords

Comments

This sequence counts the length n asynchronic site swaps given in A084511/A084512.
First differences of A084518. INVERTi transform of A084509. Cf. also A084529, A003319.
Equals left border of triangle A145463. - Gary W. Adamson, Oct 11 2008

References

  • Carsten Elsner, Dominic Klyve and Erik R. Tou, A zeta function for juggling sequences, Journal of Combinatorics and Number Theory, Volume 4, Issue 1, 2012, pp. 1-13; ISSN 1942-5600

Crossrefs

Cf. A145463. - Gary W. Adamson, Oct 11 2008

Programs

  • Maple
    INVERTi([seq(A084509(n),n=1..80)]);
    with(combinat); A084519 := proc(n) option remember; local c,i,k; A084509(n)-add(add(mul(A084519(i),i=c),c=composition(n,k)),k=2..n); end;
  • Mathematica
    LinearRecurrence[{3,2,2},{1,1,3},30] (* Harvey P. Dale, Jul 20 2013 *)

Formula

a(n) seems to satisfy the recurrence: a(1) = a(2) = 1, a(3) = 3 and a(n) = 3*a(n-1)+2*a(n-2)+2*a(n-3). If so, a(n) = floor(A*B^n+1/2) where B = 3.6890953... is the real positive root of x^3-3x^2-2x-2 = 0 and A = 0.0687059... is the real positive root of 118*x^3+118*x^2+35*x-3 = 0. - Benoit Cloitre, Jun 14 2003 [This conjecture is established in the Chung-Graham paper.]
G.f.: x*(1-2*x-2*x^2)/(1-3*x-2*x^2-2*x^3). - Colin Barker, Jan 14 2012