cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084600 Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1+x+2x^2)^n for n >= 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 4, 4, 1, 3, 9, 13, 18, 12, 8, 1, 4, 14, 28, 49, 56, 56, 32, 16, 1, 5, 20, 50, 105, 161, 210, 200, 160, 80, 32, 1, 6, 27, 80, 195, 366, 581, 732, 780, 640, 432, 192, 64, 1, 7, 35, 119, 329, 721, 1337, 2045, 2674, 2884, 2632, 1904, 1120, 448, 128, 1, 8, 44
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Comments

Triangle by rows, X^n * [1,0,0,0,...]; where X = an infinite tridiagonal matrix with (1,1,1,...) in the main and subdiagonals and (2,2,2,...) in the subsubdiagonal. Also, X = an infinite triangular matrix with (1,1,2,0,0,0,...) in each column. - Gary W. Adamson, May 26 2008
Row sums = (1, 4, 16, 64, 256, ...). - Gary W. Adamson, May 26 2008

Examples

			Triangle begins:
  1;
  1, 1,  2;
  1, 2,  5,  4,   4;
  1, 3,  9, 13,  18,  12,   8;
  1, 4, 14, 28,  49,  56,  56,  32,  16;
  1, 5, 20, 50, 105, 161, 210, 200, 160,  80,  32;
  1, 6, 27, 80, 195, 366, 581, 732, 780, 640, 432, 192, 64;
		

Crossrefs

Programs

  • Haskell
    a084600 n = a084600_list !! n
    a084600_list = concat $ iterate ([1,1,2] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
  • Maple
    f:= proc(n) option remember; expand((1+x+2*x^2)^n) end:
    T:= (n,k)-> coeff(f(n), x, k):
    seq(seq(T(n, k), k=0..2*n), n=0..10);  # Alois P. Heinz, Apr 03 2011
  • Mathematica
    t[n_, k_] := Coefficient[(1+x+2x^2)^n, x, k]; Table[t[n, k], {n, 0, 10}, {k, 0, 2 n}] // Flatten (* Jean-François Alcover, Feb 27 2015 *)

Formula

G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x^(2*k+1)*(1+x+2*x^2)/(x^(2*k+1)*(1+x+2*x^2) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2013