A084600 Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1+x+2x^2)^n for n >= 0.
1, 1, 1, 2, 1, 2, 5, 4, 4, 1, 3, 9, 13, 18, 12, 8, 1, 4, 14, 28, 49, 56, 56, 32, 16, 1, 5, 20, 50, 105, 161, 210, 200, 160, 80, 32, 1, 6, 27, 80, 195, 366, 581, 732, 780, 640, 432, 192, 64, 1, 7, 35, 119, 329, 721, 1337, 2045, 2674, 2884, 2632, 1904, 1120, 448, 128, 1, 8, 44
Offset: 0
Examples
Triangle begins: 1; 1, 1, 2; 1, 2, 5, 4, 4; 1, 3, 9, 13, 18, 12, 8; 1, 4, 14, 28, 49, 56, 56, 32, 16; 1, 5, 20, 50, 105, 161, 210, 200, 160, 80, 32; 1, 6, 27, 80, 195, 366, 581, 732, 780, 640, 432, 192, 64;
Links
- Alois P. Heinz, Rows n = 0..100, flattened
- G. Farkas, G. Kallos and G. Kiss, Large primes in generalized Pascal triangles, Acta Univ. Sapientiae, Informatica, 3, 2 (2011) 158-171.
Programs
-
Haskell
a084600 n = a084600_list !! n a084600_list = concat $ iterate ([1,1,2] *) [1] instance Num a => Num [a] where fromInteger k = [fromInteger k] (p:ps) + (q:qs) = p + q : ps + qs ps + qs = ps ++ qs (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs * = [] -- Reinhard Zumkeller, Apr 02 2011
-
Maple
f:= proc(n) option remember; expand((1+x+2*x^2)^n) end: T:= (n,k)-> coeff(f(n), x, k): seq(seq(T(n, k), k=0..2*n), n=0..10); # Alois P. Heinz, Apr 03 2011
-
Mathematica
t[n_, k_] := Coefficient[(1+x+2x^2)^n, x, k]; Table[t[n, k], {n, 0, 10}, {k, 0, 2 n}] // Flatten (* Jean-François Alcover, Feb 27 2015 *)
Formula
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x^(2*k+1)*(1+x+2*x^2)/(x^(2*k+1)*(1+x+2*x^2) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2013
Comments