cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084611 a(n) = sum of absolute values of coefficients of (1+x-x^2)^n.

Original entry on oeis.org

1, 3, 7, 13, 35, 83, 165, 367, 899, 1957, 3839, 9771, 22709, 43213, 102963, 255061, 525601, 1098339, 2798273, 6202969, 11746259, 29976073, 70898649, 140495779, 314391789, 787757461, 1688887719, 3337986541, 8583687613, 19647782463
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Comments

Limit_{n -> oo} a(n+1)/a(n) does not exist; however, lim_{n -> oo} a(n)^(1/n) = sqrt(5) (conjecture).

Crossrefs

Programs

  • Magma
    A084610:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*(-1)^j: j in [0..k]]) >;
    [(&+[Abs(A084610(n,k)): k in [0..2*n]]): n in [0..50]]; // G. C. Greubel, Mar 26 2023
    
  • Mathematica
    Table[Sum[Abs[Coefficient[Expand[(1+x-x^2)^n],x,k]],{k,0,2*n}],{n,0,30}] (* Vaclav Kotesovec, Jul 28 2013 *)
  • PARI
    {a(n)=sum(k=0,2*n,abs(polcoeff((1+x-x^2+x*O(x^k))^n,k)))}
    for(n=0,30,print1(a(n),", "))
    
  • SageMath
    def A084610(n,k): return sum(binomial(n,j)*binomial(n-j,k-2*j)*(-1)^j for j in range(k//2+1))
    def A084611(n): return 2*sum(abs(A084610(n,k)) for k in range(n)) + abs(A084610(n,n))
    [A084611(n) for n in range(50)] # G. C. Greubel, Mar 26 2023

A084613 a(n) = sum of absolute values of coefficients of (1 + x - 2*x^2)^n.

Original entry on oeis.org

1, 4, 14, 44, 124, 394, 1418, 4706, 14322, 40712, 135878, 468934, 1513650, 4502864, 13421408, 45258442, 152708520, 483810550, 1413811358, 4483843328, 15051967962, 49724234652, 154802614364, 461020649750, 1486736569982
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Crossrefs

Programs

  • Magma
    A084612:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*(-2)^j: j in [0..k]]) >;
    [(&+[Abs(A084612(n,k)): k in [0..2*n]]): n in [0..50]]; // G. C. Greubel, Mar 25 2023
    
  • Mathematica
    Table[Total[Abs[CoefficientList[Expand[(1+x-2x^2)^n],x]]],{n,0,30}]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    for(n=0,40,S=0; for(k=0,2*n,t=polcoeff((1+x-2*x^2)^n,k,x); S=S+abs(t)); print1(S","))
    
  • SageMath
    def A084612(n,k): return sum(binomial(n,k-j)*binomial(k-j,j)*(-2)^j for j in range(k+1))
    def A084613(n): return sum(abs(A084612(n,k)) for k in range(2*n+1))
    [A084613(n) for n in range(51)] # G. C. Greubel, Mar 25 2023
Showing 1-2 of 2 results.