A084623 Numerator of 2^(n-1)/n.
1, 1, 4, 2, 16, 16, 64, 16, 256, 256, 1024, 512, 4096, 4096, 16384, 2048, 65536, 65536, 262144, 131072, 1048576, 1048576, 4194304, 1048576, 16777216, 16777216, 67108864, 33554432, 268435456, 268435456, 1073741824, 67108864
Offset: 1
Examples
The first few fractions are 1, 1, 4/3, 2, 16/5, 16/3, 64/7, 16, 256/9, 256/5, 1024/11, 512/3, 4096/13, 4096/7, 16384/15, 2048, 65536/17, 65536/9, 262144/19, 131072/5, 1048576/21, 1048576/11, 4194304/23, 1048576/3, ... - _N. J. A. Sloane_, Mar 18 2018
Links
- Amiram Eldar, Table of n, a(n) for n = 1..3322
- Carlos D'Andrea and Emiliano Gómez, The Broken Spaghetti Noodle, The American Mathematical Monthly, Vol. 113, No. 6 (2006), pp. 555-557.
- Eric Weisstein's World of Mathematics, Trigonometry Angles.
- Eric Weisstein's World of Mathematics, Sphere Line Picking.
Programs
-
Magma
[Numerator(2^(n-1)/n): n in [1..40]]; // Vincenzo Librandi, Jul 30 2015
-
Maple
# Assuming offset 0: seq(2^(n - padic[ordp](n + 1, 2)), n = 0..31); # Peter Luschny, May 31 2023
-
Mathematica
Table[Numerator[2^(n - 1)/n], {n, 40}] (* Vincenzo Librandi, Jul 30 2015 *)
-
PARI
vector(50, n, numerator(2^(n-1)/n)) \\ Michel Marcus, Jul 30 2015
Comments