cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084633 Inverse binomial transform of repeated odd numbers.

Original entry on oeis.org

1, 0, 2, -4, 8, -16, 32, -64, 128, -256, 512, -1024, 2048, -4096, 8192, -16384, 32768, -65536, 131072, -262144, 524288, -1048576, 2097152, -4194304, 8388608, -16777216, 33554432, -67108864, 134217728, -268435456, 536870912, -1073741824, 2147483648, -4294967296
Offset: 0

Views

Author

Paul Barry, Jun 05 2003

Keywords

Crossrefs

Cf. A034008.

Programs

  • Magma
    [n le 1 select 1-n else (0^n + (-2)^n)/2: n in [0..40]]; // G. C. Greubel, Mar 18 2023
    
  • Mathematica
    Join[{1,0}, NestList[-2#&,2,40]] (* Harvey P. Dale, Dec 28 2015 *)
  • SageMath
    [(0^n + (-2)^n)/2 + int(n==1) for n in range(41)] # G. C. Greubel, Mar 18 2023

Formula

a(n) = (0^n + (-2)^n)/2, for n > 1, with a(1) = 0.
abs(a(n)) = A034008(n).
From Colin Barker, Jan 06 2013: (Start)
a(n) = (-1)^n * 2^(n-1) for n > 1.
a(n) = -2*a(n-1) for n > 2.
G.f.: (1 +2*x +2*x^2) / (1+2*x). (End)
E.g.f.: (1 + 2*x + exp(-2*x))/2. - Alejandro J. Becerra Jr., Jan 29 2021