cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A155559 a(n) = 2*A131577(n).

Original entry on oeis.org

0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Paul Curtz, Jan 24 2009

Keywords

Comments

Essentially the same as A131577, A046055, A011782, A000079 and A034008.

Crossrefs

Programs

Formula

a(n) = A000079(n), n>0.
a(n) = (-1)^(n+1)*A084633(n+1).
a(n) + A155543(n) = 2^n+4^n = A063376(n) = 2*A007582(n) =2*A137173(2n+1).
Conjecture: a(n) = A090129(n+3)-A090129(n+2).
G.f.: 2*x/(1-2*x). - R. J. Mathar, Jul 23 2009
E.g.f.: exp(2*x) - 1. - Stefano Spezia, Aug 26 2025

Extensions

Edited by R. J. Mathar, Jul 23 2009
Extended by Omar E. Pol, Nov 19 2012

A171476 a(n) = 6*a(n-1) - 8*a(n-2) for n > 1, a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528
Offset: 0

Views

Author

Klaus Brockhaus, Dec 09 2009

Keywords

Comments

Binomial transform of A048473; second binomial transform of A151821; third binomial transform of A010684; fourth binomial transform of A084633 without second term 0; fifth binomial transform of A168589.
Inverse binomial transform of A081625; second inverse binomial transform of A081626; third inverse binomial transform of A081627.
Partial sums of A010036.
Essentially first differences of A006095.
a(n) = A109241(n) converted from binary to decimal. - Robert Price, Jan 19 2016
a(n) is the area enclosed by a Hilbert curve with unit length segments after n iterations, when the start and end points are joined. - Jennifer Buckley, Apr 23 2024

Crossrefs

Cf. A006516 (2^(n-1)*(2^n-1)), A020522 (4^n-2^n), A048473 (2*3^n-1), A151821 (powers of 2, omitting 2 itself), A010684 (repeat 1, 3), A084633 (inverse binomial transform of repeated odd numbers), A168589 ((2-3^n)*(-1)^n), A081625 (2*5^n-3^n), A081626 (2*6^n-4^n), A081627 (2*7^n-5^n), A010036 (sum of 2^n, ..., 2^(n+1)-1), A006095 (Gaussian binomial coefficient [n, 2] for q=2), A171472, A171473.

Programs

  • Magma
    [2*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
  • Mathematica
    LinearRecurrence[{6,-8},{1,6},30] (* Harvey P. Dale, Aug 02 2020 *)
  • PARI
    m=23; v=concat([1, 6], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v
    

Formula

a(n) = Sum_{k=1..2^n-1} k.
a(n) = 2*4^n - 2^n.
G.f.: 1/((1-2*x)*(1-4*x)).
a(n) = A006516(n+1).
a(n) = 4*a(n-1) + 2^n for n > 0, a(0)=1. - Vincenzo Librandi, Jul 17 2011
a(n) = Sum_{k=0..n} 2^(n+k). - Bruno Berselli, Aug 07 2013
a(n) = A020522(n+1)/2. - Hussam al-Homsi, Jun 06 2021
E.g.f.: exp(2*x)*(2*exp(2*x) - 1). - Stefano Spezia, Dec 10 2021

A010703 Period 2: repeat (3,5).

Original entry on oeis.org

3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5
Offset: 0

Views

Author

Keywords

Comments

From Klaus Brockhaus, Dec 10 2009: (Start)
Interleaving of A010701 and A010716.
Also continued fraction expansion of (15+sqrt(285))/10.
Also decimal expansion of 35/99.
Binomial transform of 3 followed by A084633 without initial terms 1,0.
Inverse binomial transform of A171497. (End)

Crossrefs

Cf. A010701 (all 3's sequence), A010716 (all 5's sequence), A084633 (inverse binomial transform of repeated odd numbers), A171497.

Programs

Formula

From Klaus Brockhaus, Dec 10 2009: (Start)
a(n) = a(n-2) for n > 1; a(0) = 3, a(1) = 5.
G.f.: (3+5*x)/((1-x)*(1+x)). (End)
a(n) = 4 - (-1)^n. - Aaron J Grech, Aug 02 2024
E.g.f.: 3*cosh(x) + 5*sinh(x). - Stefano Spezia, Aug 04 2024

A118400 Triangle T, read by rows, where all columns of T are different and yet all columns of the matrix square T^2 (A118401) are equal; a signed version of triangle A087698.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, -1, -1, -1, -1, 1, 2, 2, 2, 1, -1, -3, -4, -4, -3, -1, 1, 4, 7, 8, 7, 4, 1, -1, -5, -11, -15, -15, -11, -5, -1, 1, 6, 16, 26, 30, 26, 16, 6, 1, -1, -7, -22, -42, -56, -56, -42, -22, -7, -1, 1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1, -1, -9, -37, -93, -162, -210, -210, -162, -93, -37, -9, -1
Offset: 0

Views

Author

Paul D. Hanna, Apr 27 2006

Keywords

Comments

Matrix inverse equals A118404. Row sums equal A084633. Signed version of: A087698 = maximum number of Boolean inputs at Hamming distance 2 for symmetric Boolean functions. This is an example of the fact that special matrices (cf. A118401) can have more than 2 signed matrix square-roots if the main diagonal is allowed to be signed.

Examples

			Triangle T begins:
1;
1,-1;
1, 0, 1;
-1,-1,-1,-1;
1, 2, 2, 2, 1;
-1,-3,-4,-4,-3,-1;
1, 4, 7, 8, 7, 4, 1;
-1,-5,-11,-15,-15,-11,-5,-1;
1, 6, 16, 26, 30, 26, 16, 6, 1;
-1,-7,-22,-42,-56,-56,-42,-22,-7,-1;
1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1;
-1,-9,-37,-93,-162,-210,-210,-162,-93,-37,-9,-1; ...
The matrix square is A118401:
1;
0, 1;
2, 0, 1;
-2, 2, 0, 1;
4,-2, 2, 0, 1;
-6, 4,-2, 2, 0, 1;
8,-6, 4,-2, 2, 0, 1;
-10, 8,-6, 4,-2, 2, 0, 1;
12,-10, 8,-6, 4,-2, 2, 0, 1; ...
in which all columns are equal.
		

Crossrefs

Cf. A118401 (matrix square), A084633 (row sums), A087698 (unsigned version); A118404 (matrix inverse).

Programs

  • PARI
    T(n,k)=polcoeff(polcoeff((1+2*x+2*x^2)/(1+x+x*y+x*O(x^n)),n,x)+y*O(y^k),k,y)
    
  • PARI
    T(n,k)=if(n==1&k==0,1,(-1)^n*(binomial(n,k)-2*binomial(n-2,k-1)))

Formula

G.f.: A(x,y) = (1+2*x+2*x^2)/(1+x+x*y). G.f. of column k = (-1)^k*(1+2*x+2*x^2)/(1+x)^(k+1) for k>=0. T(n,k) = (-1)^n*[C(n,k) - 2*C(n-2,k-1)] for n>=k>=0 except that T(1,0)=1.

A130265 Triangle read by rows: matrix product A007318 * A051340.

Original entry on oeis.org

1, 2, 2, 4, 5, 3, 8, 10, 10, 4, 16, 19, 23, 17, 5, 32, 36, 46, 46, 26, 6, 64, 69, 87, 102, 82, 37, 7, 128, 134, 162, 204, 204, 134, 50, 8, 256, 263, 303, 387, 443, 373, 205, 65, 9, 512, 520, 574, 718, 886, 886, 634, 298, 82, 10
Offset: 0

Views

Author

Gary W. Adamson, May 18 2007

Keywords

Examples

			First few rows of the triangle are:
   1;
   2,  2;
   4,  5,  3;
   8, 10, 10,   4;
  16, 19, 23,  17,  5;
  32, 36, 46,  46, 26,  6;
  64, 69, 87, 102, 82, 37,  7;
		

Crossrefs

Programs

  • Magma
    A130265:= func< n,k | k eq n select n+1 else (k+1)*Binomial(n,k) + (&+[Binomial(n, j+k): j in [1..n-k]]) >;
    [A130265(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2023
    
  • Maple
    A051340 := proc(n,k)
        if k = n then
            n+1 ;
        elif k <= n then
            1;
        else
            0;
        end if;
    end proc:
    A130265 := proc(n,k)
        add( binomial(n,j)*A051340(j,k),j=k..n) ;
    end proc:
    seq(seq(A130265(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Aug 06 2016
  • Mathematica
    T[n_, k_]:= (k+1)*Binomial[n,k] + Binomial[n,k+1]*Hypergeometric2F1[1, k-n+1, k+2, -1];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2023 *)
  • SageMath
    def A130265(n,k): return (k+1)*binomial(n,k) + sum(binomial(n, j+k) for j in range(1,n-k+1))
    flatten([[A130265(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 18 2023

Formula

Binomial transform of A051340.
From G. C. Greubel, Mar 18 2023: (Start)
T(n, k) = (k+1)*binomial(n,k) + Sum_{j=1..n-k} binomial(n, j+k).
T(n, k) = (k+1)*binomial(n,k) + binomial(n,k+1)*Hypergeometric2F1([1, k-n+1], [k+2], -1).
T(2*n, n) = (1/2)*T(2*n+1, n) = A258431(n+1).
Sum_{k=0..n} T(n, k) = A001787(n+1).
Sum_{k=0..n-1} T(n, k) = A058877(n+1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A084633(n). (End)

Extensions

Missing term inserted by R. J. Mathar, Aug 06 2016
Showing 1-5 of 5 results.