Original entry on oeis.org
0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0
A171476
a(n) = 6*a(n-1) - 8*a(n-2) for n > 1, a(0)=1, a(1)=6.
Original entry on oeis.org
1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528
Offset: 0
Cf.
A006516 (2^(n-1)*(2^n-1)),
A020522 (4^n-2^n),
A048473 (2*3^n-1),
A151821 (powers of 2, omitting 2 itself),
A010684 (repeat 1, 3),
A084633 (inverse binomial transform of repeated odd numbers),
A168589 ((2-3^n)*(-1)^n),
A081625 (2*5^n-3^n),
A081626 (2*6^n-4^n),
A081627 (2*7^n-5^n),
A010036 (sum of 2^n, ..., 2^(n+1)-1),
A006095 (Gaussian binomial coefficient [n, 2] for q=2),
A171472,
A171473.
-
[2*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
LinearRecurrence[{6,-8},{1,6},30] (* Harvey P. Dale, Aug 02 2020 *)
-
m=23; v=concat([1, 6], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v
A010703
Period 2: repeat (3,5).
Original entry on oeis.org
3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5
Offset: 0
-
&cat[ [3, 5]: n in [1..53] ]; // Klaus Brockhaus, Dec 10 2009
-
Table[If[OddQ[n], 3, 5], {n, 1, 50}] (* Stefan Steinerberger, Apr 10 2006 *)
PadRight[{},120,{3,5}] (* Harvey P. Dale, Sep 03 2012 *)
-
a(n)=3+n%2*2 \\ Charles R Greathouse IV, Nov 20 2011
A118400
Triangle T, read by rows, where all columns of T are different and yet all columns of the matrix square T^2 (A118401) are equal; a signed version of triangle A087698.
Original entry on oeis.org
1, 1, -1, 1, 0, 1, -1, -1, -1, -1, 1, 2, 2, 2, 1, -1, -3, -4, -4, -3, -1, 1, 4, 7, 8, 7, 4, 1, -1, -5, -11, -15, -15, -11, -5, -1, 1, 6, 16, 26, 30, 26, 16, 6, 1, -1, -7, -22, -42, -56, -56, -42, -22, -7, -1, 1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1, -1, -9, -37, -93, -162, -210, -210, -162, -93, -37, -9, -1
Offset: 0
Triangle T begins:
1;
1,-1;
1, 0, 1;
-1,-1,-1,-1;
1, 2, 2, 2, 1;
-1,-3,-4,-4,-3,-1;
1, 4, 7, 8, 7, 4, 1;
-1,-5,-11,-15,-15,-11,-5,-1;
1, 6, 16, 26, 30, 26, 16, 6, 1;
-1,-7,-22,-42,-56,-56,-42,-22,-7,-1;
1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1;
-1,-9,-37,-93,-162,-210,-210,-162,-93,-37,-9,-1; ...
The matrix square is A118401:
1;
0, 1;
2, 0, 1;
-2, 2, 0, 1;
4,-2, 2, 0, 1;
-6, 4,-2, 2, 0, 1;
8,-6, 4,-2, 2, 0, 1;
-10, 8,-6, 4,-2, 2, 0, 1;
12,-10, 8,-6, 4,-2, 2, 0, 1; ...
in which all columns are equal.
-
T(n,k)=polcoeff(polcoeff((1+2*x+2*x^2)/(1+x+x*y+x*O(x^n)),n,x)+y*O(y^k),k,y)
-
T(n,k)=if(n==1&k==0,1,(-1)^n*(binomial(n,k)-2*binomial(n-2,k-1)))
A130265
Triangle read by rows: matrix product A007318 * A051340.
Original entry on oeis.org
1, 2, 2, 4, 5, 3, 8, 10, 10, 4, 16, 19, 23, 17, 5, 32, 36, 46, 46, 26, 6, 64, 69, 87, 102, 82, 37, 7, 128, 134, 162, 204, 204, 134, 50, 8, 256, 263, 303, 387, 443, 373, 205, 65, 9, 512, 520, 574, 718, 886, 886, 634, 298, 82, 10
Offset: 0
First few rows of the triangle are:
1;
2, 2;
4, 5, 3;
8, 10, 10, 4;
16, 19, 23, 17, 5;
32, 36, 46, 46, 26, 6;
64, 69, 87, 102, 82, 37, 7;
-
A130265:= func< n,k | k eq n select n+1 else (k+1)*Binomial(n,k) + (&+[Binomial(n, j+k): j in [1..n-k]]) >;
[A130265(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2023
-
A051340 := proc(n,k)
if k = n then
n+1 ;
elif k <= n then
1;
else
0;
end if;
end proc:
A130265 := proc(n,k)
add( binomial(n,j)*A051340(j,k),j=k..n) ;
end proc:
seq(seq(A130265(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Aug 06 2016
-
T[n_, k_]:= (k+1)*Binomial[n,k] + Binomial[n,k+1]*Hypergeometric2F1[1, k-n+1, k+2, -1];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2023 *)
-
def A130265(n,k): return (k+1)*binomial(n,k) + sum(binomial(n, j+k) for j in range(1,n-k+1))
flatten([[A130265(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 18 2023
Showing 1-5 of 5 results.
Comments