A084680 Order of 10 modulo n [i.e., least m such that 10^m = 1 (mod n)] or 0 when no such number exists.
1, 0, 1, 0, 0, 0, 6, 0, 1, 0, 2, 0, 6, 0, 0, 0, 16, 0, 18, 0, 6, 0, 22, 0, 0, 0, 3, 0, 28, 0, 15, 0, 2, 0, 0, 0, 3, 0, 6, 0, 5, 0, 21, 0, 0, 0, 46, 0, 42, 0, 16, 0, 13, 0, 0, 0, 18, 0, 58, 0, 60, 0, 6, 0, 0, 0, 33, 0, 22, 0, 35, 0, 8, 0, 0, 0, 6, 0, 13, 0, 9, 0, 41, 0, 0, 0, 28, 0, 44, 0, 6, 0, 15, 0, 0, 0
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
Programs
-
GAP
List([1..100],n->OrderMod(10,n)); # Muniru A Asiru, Feb 26 2019
-
Maple
A084680 := proc(n) if gcd(n,10) <> 1 then 0 ; elif n = 1 then 1 ; else numtheory[order](10,n) ; end if; end proc: seq(A084680(n),n=2..100) ; # R. J. Mathar, Mar 10 2010
-
Mathematica
a[n_] := If[!CoprimeQ[n, 10], 0, MultiplicativeOrder[10, n]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 07 2012 *)
-
PARI
a(n,b=10)=if(gcd(n,b)!=1,0,znorder(Mod(b,n))); vector(66,n,a(n)) \\ Joerg Arndt, Nov 15 2014
Extensions
More terms from John W. Layman, Aug 12 2003
Comments