A084681 Order of 10 modulo 9n [i.e., least m such that 10^m = 1 (mod 9n)] or 0 when no such number exists.
1, 0, 3, 0, 0, 0, 6, 0, 9, 0, 2, 0, 6, 0, 0, 0, 16, 0, 18, 0, 6, 0, 22, 0, 0, 0, 27, 0, 28, 0, 15, 0, 6, 0, 0, 0, 3, 0, 6, 0, 5, 0, 21, 0, 0, 0, 46, 0, 42, 0, 48, 0, 13, 0, 0, 0, 18, 0, 58, 0, 60, 0, 18, 0, 0, 0, 33, 0, 66, 0, 35, 0, 8, 0, 0, 0, 6, 0, 13, 0, 81, 0, 41, 0, 0, 0, 84, 0, 44, 0, 6, 0, 15, 0
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- K. Matthews, Finding the order of a (mod m)
Programs
-
GAP
List([1..100],n->OrderMod(10,9*n)); # Muniru A Asiru, Feb 26 2019
-
Maple
f:= proc(n) if igcd(n,10)>1 then 0 else numtheory:-order(10,9*n) fi end proc: map(f, [$1..100]); # Robert Israel, Feb 22 2019
-
Mathematica
a[n_] := If[GCD[10, 9n] != 1, 0, MultiplicativeOrder[10, 9n]]; Array[a, 100] (* Jean-François Alcover, Jul 19 2020 *)
-
PARI
a(n) = if (gcd(10, 9*n) != 1, 0, znorder(Mod(10, 9*n))); \\ Michel Marcus, Feb 23 2019
Formula
Extensions
More terms from John W. Layman, Oct 09 2003