A084703 Squares k such that 2*k+1 is also a square.
0, 4, 144, 4900, 166464, 5654884, 192099600, 6525731524, 221682772224, 7530688524100, 255821727047184, 8690408031080164, 295218051329678400, 10028723337177985444, 340681375412721826704, 11573138040695364122500, 393146012008229658338304, 13355391270239113019379844
Offset: 0
Links
- D. W. Wilson, Table of n, a(n-1) for n = 1..100 (offset=1)
- Emrah Kılıç, Yücel Türker Ulutaş, and Neşe Ömür, A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters, J. Int. Seq. 14 (2011), Article 11.5.6, table 3, k=2.
- Thomas Koshy, Products Involving Reciprocals of Gibonacci Polynomials, The Fibonacci Quarterly, Vol. 60, No. 1 (2022), pp. 15-24.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Crossrefs
Programs
-
Magma
[4*Evaluate(ChebyshevU(n), 3)^2: n in [0..30]]; // G. C. Greubel, Aug 18 2022
-
Mathematica
b[n_]:= b[n]= If[n<2, n, 34*b[n-1] -b[n-2] +2]; (* b=A001110 *) a[n_]:= 4*b[n]; Table[a[n], {n, 0, 30}] 4*ChebyshevU[Range[-1,30], 3]^2 (* G. C. Greubel, Aug 18 2022 *)
-
SageMath
[4*chebyshev_U(n-1, 3)^2 for n in (0..30)] # G. C. Greubel, Aug 18 2022
Formula
a(n+1) = A001652(n)*A001652(n+1) + A046090(n)*A046090(n+1) = A001542(n+1)^2. - Charlie Marion, Jul 01 2003
a(n) = A001653(k+n)*A001653(k-n) - A001653(k)^2, for k >= n >= 0; e.g. 144 = 5741*5 - 169^2. - Charlie Marion, Jul 16 2003
G.f.: 4*x*(1+x)/((1-x)*(1-34*x+x^2)). - R. J. Mathar, Dec 15 2008
a(n) = A079291(2n). - M. F. Hasler, Jan 16 2012
From George F. Johnson, Nov 02 2012: (Start)
a(n) = ((17+12*sqrt(2))^n + (17-12*sqrt(2))^n - 2)/8.
a(n+1) = 17*a(n) + 4 + 12*sqrt(a(n)*(2*a(n) + 1)).
a(n-1) = 17*a(n) + 4 - 12*sqrt(a(n)*(2*a(n) + 1)).
a(n-1)*a(n+1) = (a(n) - 4)^2.
2*a(n) + 1 = (A001541(n))^2.
a(n+1) = 34*a(n) - a(n-1) + 8 for n>1, a(0)=0, a(1)=4.
a(n+1) = 35*a(n) - 35*a(n-1) + a(n-2) for n>0, a(0)=0, a(1)=4, a(2)=144.
a(n)*a(n+1) = (4*A029549(n))^2.
a(n+1) - a(n) = 4*A046176(n).
a(n) + a(n+1) = 4*(6*A029549(n) + 1).
Limit_{n -> infinity} a(n)/a(n-r) = (17+12*sqrt(2))^r. (End)
Empirical: a(n) = A089928(4*n-2), for n > 0. - Alex Ratushnyak, Apr 12 2013
a(n) = 4*A001109(n)^2. - G. C. Greubel, Aug 18 2022
Product_{n>=2} (1 - 4/a(n)) = sqrt(2)/3 + 1/2 (Koshy, 2022, section 3, p. 19). - Amiram Eldar, Jan 23 2025
Extensions
Edited and extended by Robert G. Wilson v, Jun 15 2003
Comments