cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084776 a(n) = sum of absolute-valued coefficients of (1+2*x-x^2)^n.

Original entry on oeis.org

1, 4, 12, 36, 100, 300, 776, 2412, 6304, 19036, 50952, 148896, 393452, 1211444, 3167004, 9672772, 25295248, 76084796, 200590424, 608621376, 1617201648, 4908511140, 12658776540, 38907904188, 102775961200, 310485090044
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2003

Keywords

Crossrefs

Programs

  • Magma
    m:=40;
    R:=PowerSeriesRing(Integers(), 2*(m+2));
    f:= func< n,k | Coefficient(R!( (1+2*x-x^2)^n ), k) >;
    [(&+[ Abs(f(n,k)): k in [0..2*n]]): n in [0..m]]; // G. C. Greubel, Jun 03 2023
    
  • Mathematica
    T[n_, k_]:=T[n,k]=SeriesCoefficient[Series[(1+2*x-x^2)^n,{x,0,2n}], k];
    a[n_]:= a[n]= Sum[Abs[T[n,k]], {k,0,2n}];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Jun 03 2023 *)
  • PARI
    for(n=0,40,S=sum(k=0,2*n,abs(polcoeff((1+2*x-x^2)^n,k,x))); print1(S","))
    
  • SageMath
    def f(n,k):
        P. = PowerSeriesRing(QQ)
        return P( (1+2*x-x^2)^n ).list()[k]
    def a(n): return sum( abs(f(n,k)) for k in range(2*n+1) )
    [a(n) for n in range(41)] # G. C. Greubel, Jun 03 2023

Formula

a(n) = Sum_{k=0..2*n} abs(f(n, k)), where f(n, k) = (sqrt(2) - 1)^k * Sum_{j=0..k} binomial(n, j)*binomial(n, k-j)*(-1)^j*(1+sqrt(2))^(2*j). - G. C. Greubel, Jun 03 2023