cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084781 G.f. A(x) satisfies A(x) = 1 + x*(1+x+x^2)*A(x)^2.

Original entry on oeis.org

1, 1, 3, 10, 35, 132, 519, 2105, 8746, 37033, 159229, 693343, 3051290, 13550083, 60642857, 273248824, 1238567263, 5643738611, 25837579578, 118785766683, 548182891007, 2538522337214, 11792272546723, 54936210525388, 256603469498039, 1201486779137257
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2003

Keywords

Programs

  • Magma
    I:=[1,1,3,10,35]; [n le 5 select I[n] else (3*(n-2)*Self(n-1) + (7*n-18)*Self(n-2) + 12*(n-3)*Self(n-3) + 2*(4*n-15)*Self(n-4) + 2*(2*n-9)*Self(n-5))/n: n in [1..40]]; // G. C. Greubel, Jun 06 2023
    
  • Mathematica
    a[n_]:= a[n]= Sum[Sum[a[i]a[j-i], {i,0,j}], {j, n-3, n-1}]; a[0]=1; Table[a[n], {n, 0, 30}]
    Flatten[{1,Table[Sum[Sum[Sum[Binomial[j,n-3*k+2*j]*Binomial[k,j] *Binomial[-m+2*k-1,k-1]/k*m,{j,0,k}],{k,m,n}],{m,1,n}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 17 2013 *)
  • Maxima
    a(n):=sum((sum(((sum(binomial(j,n-3*k+2*j)*binomial(k,j),j,0,k))* binomial(-m+2*k-1,k-1))/k,k,m,n))*m,m,1,n); /* Vladimir Kruchinin, May 28 2011 */
    
  • SageMath
    @CachedFunction
    def a(n): # a = A084781
        if n==0: return 1
        else: return sum( sum( a(k)*a(j-k) for k in range(j+1) ) for j in range(n-3,n) )
    [a(n) for n in range(41)] # G. C. Greubel, Jun 06 2023

Formula

a(0)=1; for n > 0, a(n) = Sum_{j=n-3..n-1} Sum_{i=0..j} a(i)*a(j-i). - Mario Catalani (mario.catalani(AT)unito.it), Jun 19 2003
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x+x^2+x^3 (continued fraction); equivalently g.f. C(x+x^2+x^3) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
a(n) = Sum_{m=1..n} Sum_{k=m..n} (Sum_{j=0..k} binomial(j,n-3*k+2*j) * binomial(k,j)) * (binomial(-m+2*k-1,k-1)/k) * m, for n > 0. - Vladimir Kruchinin, May 28 2011
Recurrence: (n+1)*a(n) = 3*(n-1)*a(n-1) + (7*n-11)*a(n-2) + 12*(n-2)*a(n-3) + 2*(4*n-11)*a(n-4) + 2*(2*n-7)*a(n-5). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ 1/sqrt(3)*sqrt(-(1350 + 66*sqrt(131)*sqrt(3))^(2/3) - 48 + 21*(1350 + 66*sqrt(131)*sqrt(3))^(1/3))/((1350 + 66*sqrt(131)*sqrt(3))^(1/6)) * (((190 + 6*sqrt(393))^(2/3) + 28 + 4*(190 + 6*sqrt(393))^(1/3))/(190 + 6*sqrt(393))^(1/3)/3)^n / (n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Sep 17 2013