cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084786 Row sums of the triangle (A084783) and the differences of the main diagonal (A084785) and the first column (A084784).

Original entry on oeis.org

1, 3, 10, 41, 211, 1354, 10620, 99327, 1081744, 13443065, 187538132, 2899087774, 49149083790, 906169148064, 18044322039456, 385825735367745, 8814867042465387, 214270073007359704, 5520898403200292418, 150290771692227728963, 4309813692713979537503
Offset: 0

Views

Author

Paul D. Hanna, Jun 13 2003

Keywords

Comments

In the triangle (A084783), the diagonal (A084785) is the self-convolution of the first column (A084784) and the row sums (this sequence) gives the differences of the diagonal and the first column.

Crossrefs

Programs

  • Mathematica
    A084784= With[{m=60}, CoefficientList[Series[Exp[Sum[Sum[ j!*StirlingS2[k, j], {j, k}]*x^k /k , {k, m + 1}]], {x,0,m}], x]];
    T[n_, k_]:= T[n, k]= If[k==0, A084784[[n+1]], T[n, k-1] + T[n-1, k-1]]; (* A084783 *)
    A084786[n_]:= A084786[n]= Sum[T[n, k], {k,0,n}];
    Table[A084786[n], {n,0,40}] (* G. C. Greubel, Jun 08 2023 *)
  • PARI
    A = matrix(25, 25); A[1, 1] = 1; rs = 1; print(1); for (n = 2, 25, sc = sum (i = 2, n - 1, A[i, 1]*A[n + 1 - i, 1]); A[n, 1] = rs - sc; rs = A[n, 1]; for (k = 2, n, A[n, k] = A[n, k - 1] + A[n - 1, k - 1]; rs += A[n, k]); print(rs)); \\ David Wasserman, Jan 06 2005
    
  • SageMath
    def f(n, x): return exp(sum(sum( factorial(j)*stirling_number2(k,j) *x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
    m=50
    def A084784_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(m,x) ).list()
    b=A084784_list(m)
    @CachedFunction
    def T(n,k): # T = A084783
        if k==0: return b[n]
        else: return T(n, k-1) + T(n-1, k-1)
    def A084786(n): return sum(T(n, k) for k in range(n+1))
    [A084786(n) for n in range(m-9)] # G. C. Greubel, Jun 08 2023

Formula

a(n) ~ n! / (2 * (log(2))^(n+2)). - Vaclav Kotesovec, Nov 19 2014

Extensions

More terms from David Wasserman, Jan 06 2005