A084786 Row sums of the triangle (A084783) and the differences of the main diagonal (A084785) and the first column (A084784).
1, 3, 10, 41, 211, 1354, 10620, 99327, 1081744, 13443065, 187538132, 2899087774, 49149083790, 906169148064, 18044322039456, 385825735367745, 8814867042465387, 214270073007359704, 5520898403200292418, 150290771692227728963, 4309813692713979537503
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..400
Programs
-
Mathematica
A084784= With[{m=60}, CoefficientList[Series[Exp[Sum[Sum[ j!*StirlingS2[k, j], {j, k}]*x^k /k , {k, m + 1}]], {x,0,m}], x]]; T[n_, k_]:= T[n, k]= If[k==0, A084784[[n+1]], T[n, k-1] + T[n-1, k-1]]; (* A084783 *) A084786[n_]:= A084786[n]= Sum[T[n, k], {k,0,n}]; Table[A084786[n], {n,0,40}] (* G. C. Greubel, Jun 08 2023 *)
-
PARI
A = matrix(25, 25); A[1, 1] = 1; rs = 1; print(1); for (n = 2, 25, sc = sum (i = 2, n - 1, A[i, 1]*A[n + 1 - i, 1]); A[n, 1] = rs - sc; rs = A[n, 1]; for (k = 2, n, A[n, k] = A[n, k - 1] + A[n - 1, k - 1]; rs += A[n, k]); print(rs)); \\ David Wasserman, Jan 06 2005
-
SageMath
def f(n, x): return exp(sum(sum( factorial(j)*stirling_number2(k,j) *x^k/k for j in range(1,k+1)) for k in range(1,n+2))) m=50 def A084784_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(m,x) ).list() b=A084784_list(m) @CachedFunction def T(n,k): # T = A084783 if k==0: return b[n] else: return T(n, k-1) + T(n-1, k-1) def A084786(n): return sum(T(n, k) for k in range(n+1)) [A084786(n) for n in range(m-9)] # G. C. Greubel, Jun 08 2023
Formula
a(n) ~ n! / (2 * (log(2))^(n+2)). - Vaclav Kotesovec, Nov 19 2014
Extensions
More terms from David Wasserman, Jan 06 2005
Comments