cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084892 Decimal expansion of Product_{j>=1, j!=2} zeta(j/2) (negated).

Original entry on oeis.org

1, 4, 6, 4, 7, 5, 6, 6, 3, 0, 1, 6, 3, 8, 3, 1, 1, 3, 1, 6, 9, 9, 9, 7, 6, 0, 9, 1, 2, 2, 0, 4, 2, 1, 9, 2, 6, 3, 8, 1, 1, 7, 3, 0, 3, 4, 7, 9, 6, 9, 6, 0, 2, 5, 1, 6, 9, 2, 6, 9, 3, 9, 7, 5, 2, 0, 1, 2, 7, 5, 7, 9, 1, 0, 4, 4, 9, 2, 6, 3, 5, 2, 5, 2, 9, 1, 8, 1, 7, 4, 2, 3, 5, 1, 0, 2, 2, 7, 0, 9, 4, 1
Offset: 2

Views

Author

Eric W. Weisstein, Jun 10 2003

Keywords

Comments

This constant, A_2, appears in the asymptotic formula A063966(n) = Sum_{k=1..n} A000688(k) = A_1 * n + A_2 * n^(1/2) + A_3 * n^(1/3) + O(n^(50/199 + e)), where e>0 is arbitrarily small, A_1 = A021002, and A_3 = A084893. - Amiram Eldar, Oct 16 2020

Examples

			-14.64756630163831131699976...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.

Crossrefs

Programs

  • Mathematica
    m0 = 100; dm = 100; digits = 102; Clear[p]; p[m_] := p[m] = Zeta[1/2]*Product[Zeta[j/2], {j, 3, m}]; p[m0]; p[m = m0 + dm]; While[RealDigits[p[m], 10, digits + 10] != RealDigits[p[m - dm], 10, digits + 10], Print["m = ", m]; m = m + dm]; RealDigits[p[m], 10, digits] // First (* Jean-François Alcover, Jun 23 2014 *)
  • PARI
    prodinf(k=1, if (k!=2, zeta(k/2), 1)) \\ Michel Marcus, Oct 16 2020