A084892 Decimal expansion of Product_{j>=1, j!=2} zeta(j/2) (negated).
1, 4, 6, 4, 7, 5, 6, 6, 3, 0, 1, 6, 3, 8, 3, 1, 1, 3, 1, 6, 9, 9, 9, 7, 6, 0, 9, 1, 2, 2, 0, 4, 2, 1, 9, 2, 6, 3, 8, 1, 1, 7, 3, 0, 3, 4, 7, 9, 6, 9, 6, 0, 2, 5, 1, 6, 9, 2, 6, 9, 3, 9, 7, 5, 2, 0, 1, 2, 7, 5, 7, 9, 1, 0, 4, 4, 9, 2, 6, 3, 5, 2, 5, 2, 9, 1, 8, 1, 7, 4, 2, 3, 5, 1, 0, 2, 2, 7, 0, 9, 4, 1
Offset: 2
Examples
-14.64756630163831131699976...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 274.
Links
- B. R. Srinivasan, On the Number of Abelian Groups of a Given Order, Acta Arithmetica, Vol. 23, No. 2 (1973), pp. 195-205, alternative link.
- Eric Weisstein's World of Mathematics, Abelian Group.
Programs
-
Mathematica
m0 = 100; dm = 100; digits = 102; Clear[p]; p[m_] := p[m] = Zeta[1/2]*Product[Zeta[j/2], {j, 3, m}]; p[m0]; p[m = m0 + dm]; While[RealDigits[p[m], 10, digits + 10] != RealDigits[p[m - dm], 10, digits + 10], Print["m = ", m]; m = m + dm]; RealDigits[p[m], 10, digits] // First (* Jean-François Alcover, Jun 23 2014 *)
-
PARI
prodinf(k=1, if (k!=2, zeta(k/2), 1)) \\ Michel Marcus, Oct 16 2020
Comments